| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279 |
- import logging
- from typing import Dict, List, Optional, Any, Union
- from datetime import datetime
- import json
- from app.core.llm.llm_service import llm_client, llm_sql
- from app.core.graph.graph_operations import connect_graph, create_or_get_node, get_node, relationship_exists
- from app.core.meta_data import translate_and_parse, get_formatted_time
- from py2neo import Relationship
- from app import db
- from sqlalchemy import text
- logger = logging.getLogger(__name__)
- class DataFlowService:
- """数据流服务类,处理数据流相关的业务逻辑"""
-
- @staticmethod
- def get_dataflows(page: int = 1, page_size: int = 10, search: str = '') -> Dict[str, Any]:
- """
- 获取数据流列表
-
- Args:
- page: 页码
- page_size: 每页大小
- search: 搜索关键词
-
- Returns:
- 包含数据流列表和分页信息的字典
- """
- try:
- # 从图数据库查询数据流列表
- skip_count = (page - 1) * page_size
-
- # 构建搜索条件
- where_clause = ""
- params: Dict[str, Union[int, str]] = {'skip': skip_count, 'limit': page_size}
-
- if search:
- where_clause = "WHERE n.name_zh CONTAINS $search OR n.description CONTAINS $search"
- params['search'] = search
-
- # 查询数据流列表
- query = f"""
- MATCH (n:DataFlow)
- {where_clause}
- RETURN n, id(n) as node_id
- ORDER BY n.created_at DESC
- SKIP $skip
- LIMIT $limit
- """
-
- # 获取Neo4j驱动(如果连接失败会抛出ConnectionError异常)
- try:
- with connect_graph().session() as session:
- list_result = session.run(query, params).data()
-
- # 查询总数
- count_query = f"""
- MATCH (n:DataFlow)
- {where_clause}
- RETURN count(n) as total
- """
- count_params = {'search': search} if search else {}
- count_result = session.run(count_query, count_params).single()
- total = count_result['total'] if count_result else 0
- except Exception as e:
- # 确保 driver 被正确关闭,避免资源泄漏 - 这里不再需要手动关闭driver,因为connect_graph返回的可能是单例或新实例,
- # 但如果是新实例,我们没有引用它去关闭。如果connect_graph设计为每次返回新实例且需要关闭,
- # 那么之前的代码是对的。如果connect_graph返回单例,则不应关闭。
- # 根据用户反馈:The driver.close() call prematurely closes a shared driver instance.
- # 所以我们直接使用 session,并不关闭 driver。
- logger.error(f"查询数据流失败: {str(e)}")
- raise e
-
- # 格式化结果
- dataflows = []
- for record in list_result:
- node = record['n']
- dataflow = dict(node)
- dataflow['id'] = record['node_id'] # 使用查询返回的node_id
- dataflows.append(dataflow)
-
- return {
- 'list': dataflows,
- 'pagination': {
- 'page': page,
- 'page_size': page_size,
- 'total': total,
- 'total_pages': (total + page_size - 1) // page_size
- }
- }
- except Exception as e:
- logger.error(f"获取数据流列表失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_dataflow_by_id(dataflow_id: int) -> Optional[Dict[str, Any]]:
- """
- 根据ID获取数据流详情
-
- Args:
- dataflow_id: 数据流ID
-
- Returns:
- 数据流详情字典,如果不存在则返回None
- """
- try:
- # 从Neo4j获取DataFlow节点的所有属性
- neo4j_query = """
- MATCH (n:DataFlow)
- WHERE id(n) = $dataflow_id
- RETURN n, id(n) as node_id
- """
-
- with connect_graph().session() as session:
- neo4j_result = session.run(neo4j_query, dataflow_id=dataflow_id).data()
-
- if not neo4j_result:
- logger.warning(f"未找到ID为 {dataflow_id} 的DataFlow节点")
- return None
-
- record = neo4j_result[0]
- node = record['n']
-
- # 将节点属性转换为字典
- dataflow = dict(node)
- dataflow['id'] = record['node_id']
-
- # 处理 script_requirement:如果是JSON字符串,解析为对象
- script_requirement_str = dataflow.get('script_requirement', '')
- if script_requirement_str:
- try:
- # 尝试解析JSON字符串
- script_requirement_obj = json.loads(script_requirement_str)
- dataflow['script_requirement'] = script_requirement_obj
- logger.debug(f"成功解析script_requirement: {script_requirement_obj}")
- except (json.JSONDecodeError, TypeError) as e:
- logger.warning(f"script_requirement解析失败,保持原值: {e}")
- # 保持原值(字符串)
- dataflow['script_requirement'] = script_requirement_str
- else:
- # 如果为空,设置为None
- dataflow['script_requirement'] = None
-
- logger.info(f"成功获取DataFlow详情,ID: {dataflow_id}, 名称: {dataflow.get('name_zh')}")
- return dataflow
-
- except Exception as e:
- logger.error(f"获取数据流详情失败: {str(e)}")
- raise e
-
- @staticmethod
- def create_dataflow(data: Dict[str, Any]) -> Dict[str, Any]:
- """
- 创建新的数据流
-
- Args:
- data: 数据流配置数据
-
- Returns:
- 创建的数据流信息
- """
- try:
- # 验证必填字段
- required_fields = ['name_zh', 'describe']
- for field in required_fields:
- if field not in data:
- raise ValueError(f"缺少必填字段: {field}")
-
- dataflow_name = data['name_zh']
-
- # 使用LLM翻译名称生成英文名
- try:
- result_list = translate_and_parse(dataflow_name)
- name_en = result_list[0] if result_list else dataflow_name.lower().replace(' ', '_')
- except Exception as e:
- logger.warning(f"翻译失败,使用默认英文名: {str(e)}")
- name_en = dataflow_name.lower().replace(' ', '_')
-
- # 处理 script_requirement,将其转换为 JSON 字符串
- script_requirement = data.get('script_requirement', None)
- if script_requirement is not None:
- # 如果是字典或列表,转换为 JSON 字符串
- if isinstance(script_requirement, (dict, list)):
- script_requirement_str = json.dumps(script_requirement, ensure_ascii=False)
- else:
- # 如果已经是字符串,直接使用
- script_requirement_str = str(script_requirement)
- else:
- script_requirement_str = ''
-
- # 准备节点数据
- node_data = {
- 'name_zh': dataflow_name,
- 'name_en': name_en,
- 'category': data.get('category', ''),
- 'organization': data.get('organization', ''),
- 'leader': data.get('leader', ''),
- 'frequency': data.get('frequency', ''),
- 'tag': data.get('tag', ''),
- 'describe': data.get('describe', ''),
- 'status': data.get('status', 'inactive'),
- 'update_mode': data.get('update_mode', 'append'),
- 'script_type': data.get('script_type', 'python'),
- 'script_requirement': script_requirement_str,
- 'created_at': get_formatted_time(),
- 'updated_at': get_formatted_time()
- }
-
- # 创建或获取数据流节点
- dataflow_id = get_node('DataFlow', name=dataflow_name)
- if dataflow_id:
- raise ValueError(f"数据流 '{dataflow_name}' 已存在")
-
- dataflow_id = create_or_get_node('DataFlow', **node_data)
-
- # 处理标签关系
- tag_id = data.get('tag')
- if tag_id is not None:
- try:
- DataFlowService._handle_tag_relationship(dataflow_id, tag_id)
- except Exception as e:
- logger.warning(f"处理标签关系时出错: {str(e)}")
-
- # 成功创建图数据库节点后,写入PG数据库
- try:
- DataFlowService._save_to_pg_database(data, dataflow_name, name_en)
- logger.info(f"数据流信息已写入PG数据库: {dataflow_name}")
-
- # PG数据库记录成功写入后,在neo4j图数据库中创建script关系
- try:
- DataFlowService._handle_script_relationships(data,dataflow_name,name_en)
- logger.info(f"脚本关系创建成功: {dataflow_name}")
- except Exception as script_error:
- logger.warning(f"创建脚本关系失败: {str(script_error)}")
-
- except Exception as pg_error:
- logger.error(f"写入PG数据库失败: {str(pg_error)}")
- # 注意:这里可以选择回滚图数据库操作,但目前保持图数据库数据
- # 在实际应用中,可能需要考虑分布式事务
-
- # 返回创建的数据流信息
- # 查询创建的节点获取完整信息
- query = "MATCH (n:DataFlow {name_zh: $name_zh}) RETURN n, id(n) as node_id"
- with connect_graph().session() as session:
- id_result = session.run(query, name_zh=dataflow_name).single()
- if id_result:
- dataflow_node = id_result['n']
- node_id = id_result['node_id']
-
- # 将节点属性转换为字典
- result = dict(dataflow_node)
- result['id'] = node_id
- else:
- # 如果查询失败,返回基本信息
- result = {
- 'id': dataflow_id if isinstance(dataflow_id, int) else None,
- 'name_zh': dataflow_name,
- 'name_en': name_en,
- 'created_at': get_formatted_time()
- }
-
- logger.info(f"创建数据流成功: {dataflow_name}")
- return result
-
- except Exception as e:
- logger.error(f"创建数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def _save_to_pg_database(data: Dict[str, Any], script_name: str, name_en: str):
- """
- 将脚本信息保存到PG数据库
-
- Args:
- data: 包含脚本信息的数据
- script_name: 脚本名称
- name_en: 英文名称
- """
- try:
- # 提取脚本相关信息
- # 处理 script_requirement,确保保存为 JSON 字符串
- script_requirement_raw = data.get('script_requirement', None)
- rule_from_requirement = '' # 用于保存从 script_requirement 中提取的 rule
-
- if script_requirement_raw is not None:
- # 如果是字典,提取 rule 字段
- if isinstance(script_requirement_raw, dict):
- rule_from_requirement = script_requirement_raw.get('rule', '')
- script_requirement = json.dumps(script_requirement_raw, ensure_ascii=False)
- elif isinstance(script_requirement_raw, list):
- script_requirement = json.dumps(script_requirement_raw, ensure_ascii=False)
- else:
- # 如果已经是字符串,尝试解析以提取 rule
- script_requirement = str(script_requirement_raw)
- try:
- parsed_req = json.loads(script_requirement)
- if isinstance(parsed_req, dict):
- rule_from_requirement = parsed_req.get('rule', '')
- except (json.JSONDecodeError, TypeError):
- pass
- else:
- script_requirement = ''
-
- # 处理 script_content:优先使用前端传入的值,如果为空则使用从 script_requirement 提取的 rule
- script_content = data.get('script_content', '')
- if not script_content and rule_from_requirement:
- script_content = rule_from_requirement
- logger.info(f"script_content为空,使用从script_requirement提取的rule: {rule_from_requirement}")
-
- # 安全处理 source_table 和 target_table(避免 None 值导致的 'in' 操作错误)
- source_table_raw = data.get('source_table') or ''
- source_table = source_table_raw.split(':')[-1] if ':' in source_table_raw else source_table_raw
-
- target_table_raw = data.get('target_table') or ''
- target_table = target_table_raw.split(':')[-1] if ':' in target_table_raw else (target_table_raw or name_en)
-
- script_type = data.get('script_type', 'python')
- user_name = data.get('created_by', 'system')
- target_dt_column = data.get('target_dt_column', '')
-
- # 验证必需字段
- if not target_table:
- target_table = name_en
- if not script_name:
- raise ValueError("script_name不能为空")
-
- # 构建插入SQL
- insert_sql = text("""
- INSERT INTO dags.data_transform_scripts
- (source_table, target_table, script_name, script_type, script_requirement,
- script_content, user_name, create_time, update_time, target_dt_column)
- VALUES
- (:source_table, :target_table, :script_name, :script_type, :script_requirement,
- :script_content, :user_name, :create_time, :update_time, :target_dt_column)
- ON CONFLICT (target_table, script_name)
- DO UPDATE SET
- source_table = EXCLUDED.source_table,
- script_type = EXCLUDED.script_type,
- script_requirement = EXCLUDED.script_requirement,
- script_content = EXCLUDED.script_content,
- user_name = EXCLUDED.user_name,
- update_time = EXCLUDED.update_time,
- target_dt_column = EXCLUDED.target_dt_column
- """)
-
- # 准备参数
- current_time = datetime.now()
- params = {
- 'source_table': source_table,
- 'target_table': target_table,
- 'script_name': script_name,
- 'script_type': script_type,
- 'script_requirement': script_requirement,
- 'script_content': script_content,
- 'user_name': user_name,
- 'create_time': current_time,
- 'update_time': current_time,
- 'target_dt_column': target_dt_column
- }
-
- # 执行插入操作
- db.session.execute(insert_sql, params)
-
- # 新增:保存到task_list表
- try:
- # 1. 解析script_requirement并构建详细的任务描述
- task_description_md = script_requirement
-
- try:
- # 尝试解析JSON
- try:
- req_json = json.loads(script_requirement)
- except (json.JSONDecodeError, TypeError):
- req_json = None
-
- if isinstance(req_json, dict):
- # 1. 从script_requirement中提取rule字段作为request_content_str
- request_content_str = req_json.get('rule', '')
-
- # 2. 从script_requirement中提取source_table和target_table字段信息
- source_table_ids = req_json.get('source_table', [])
- target_table_ids = req_json.get('target_table', [])
-
- # 确保是列表格式
- if not isinstance(source_table_ids, list):
- source_table_ids = [source_table_ids] if source_table_ids else []
- if not isinstance(target_table_ids, list):
- target_table_ids = [target_table_ids] if target_table_ids else []
-
- # 合并所有BusinessDomain ID
- all_bd_ids = source_table_ids + target_table_ids
-
- # 4. 从data参数中提取update_mode
- update_mode = data.get('update_mode', 'append')
-
- # 生成Business Domain DDLs
- source_ddls = []
- target_ddls = []
- data_source_info = None
-
- if all_bd_ids:
- try:
- with connect_graph().session() as session:
- # 处理source tables
- for bd_id in source_table_ids:
- ddl_info = DataFlowService._generate_businessdomain_ddl(
- session, bd_id, is_target=False
- )
- if ddl_info:
- source_ddls.append(ddl_info['ddl'])
- # 3. 如果BELONGS_TO关系连接的是"数据资源",获取数据源信息
- if ddl_info.get('data_source') and not data_source_info:
- data_source_info = ddl_info['data_source']
-
- # 处理target tables(5. 目标表缺省要有create_time字段)
- for bd_id in target_table_ids:
- ddl_info = DataFlowService._generate_businessdomain_ddl(
- session, bd_id, is_target=True, update_mode=update_mode
- )
- if ddl_info:
- target_ddls.append(ddl_info['ddl'])
- # 同样检查BELONGS_TO关系,获取数据源信息
- if ddl_info.get('data_source') and not data_source_info:
- data_source_info = ddl_info['data_source']
-
- except Exception as neo_e:
- logger.error(f"获取BusinessDomain DDL失败: {str(neo_e)}")
-
- # 构建Markdown格式的任务描述
- task_desc_parts = [f"# Task: {script_name}\n"]
-
- # 添加数据源信息
- if data_source_info:
- task_desc_parts.append("## Data Source")
- task_desc_parts.append(f"- **Type**: {data_source_info.get('type', 'N/A')}")
- task_desc_parts.append(f"- **Host**: {data_source_info.get('host', 'N/A')}")
- task_desc_parts.append(f"- **Port**: {data_source_info.get('port', 'N/A')}")
- task_desc_parts.append(f"- **Database**: {data_source_info.get('database', 'N/A')}\n")
-
- # 添加源表DDL
- if source_ddls:
- task_desc_parts.append("## Source Tables (DDL)")
- for ddl in source_ddls:
- task_desc_parts.append(f"```sql\n{ddl}\n```\n")
-
- # 添加目标表DDL
- if target_ddls:
- task_desc_parts.append("## Target Tables (DDL)")
- for ddl in target_ddls:
- task_desc_parts.append(f"```sql\n{ddl}\n```\n")
-
- # 添加更新模式说明
- task_desc_parts.append("## Update Mode")
- if update_mode == 'append':
- task_desc_parts.append("- **Mode**: Append (追加模式)")
- task_desc_parts.append("- **Description**: 新数据将追加到目标表,不删除现有数据\n")
- else:
- task_desc_parts.append("- **Mode**: Full Refresh (全量更新)")
- task_desc_parts.append("- **Description**: 目标表将被清空后重新写入数据\n")
-
- # 添加请求内容(rule)
- if request_content_str:
- task_desc_parts.append("## Request Content")
- task_desc_parts.append(f"{request_content_str}\n")
-
- # 添加实施步骤(根据任务类型优化)
- task_desc_parts.append("## Implementation Steps")
-
- # 判断是否为远程数据源导入任务
- if data_source_info:
- # 从远程数据源导入数据的简化步骤
- task_desc_parts.append("1. Create an n8n workflow to execute the data import task")
- task_desc_parts.append("2. Configure the workflow to call `import_resource_data.py` Python script")
- task_desc_parts.append("3. Pass the following parameters to the Python execution node:")
- task_desc_parts.append(" - `--source-config`: JSON configuration for the remote data source")
- task_desc_parts.append(" - `--target-table`: Target table name (data resource English name)")
- task_desc_parts.append(f" - `--update-mode`: {update_mode}")
- task_desc_parts.append("4. The Python script will automatically:")
- task_desc_parts.append(" - Connect to the remote data source")
- task_desc_parts.append(" - Extract data from the source table")
- task_desc_parts.append(f" - Write data to target table using {update_mode} mode")
- else:
- # 数据转换任务的完整步骤
- task_desc_parts.append("1. Extract data from source tables as specified in the DDL")
- task_desc_parts.append("2. Apply transformation logic according to the rule:")
- if request_content_str:
- task_desc_parts.append(f" - Rule: {request_content_str}")
- task_desc_parts.append("3. Generate Python program to implement the data transformation logic")
- task_desc_parts.append(f"4. Write transformed data to target table using {update_mode} mode")
- task_desc_parts.append("5. Create an n8n workflow to schedule and execute the Python program")
-
- task_description_md = "\n".join(task_desc_parts)
-
- except Exception as parse_e:
- logger.warning(f"解析任务描述详情失败,使用原始描述: {str(parse_e)}")
- task_description_md = script_requirement
- # 假设运行根目录为项目根目录,dataflows.py在app/core/data_flow/
- code_path = 'app/core/data_flow'
-
- task_insert_sql = text("""
- INSERT INTO public.task_list
- (task_name, task_description, status, code_name, code_path, create_by, create_time, update_time)
- VALUES
- (:task_name, :task_description, :status, :code_name, :code_path, :create_by, :create_time, :update_time)
- """)
-
- task_params = {
- 'task_name': script_name,
- 'task_description': task_description_md,
- 'status': 'pending',
- 'code_name': script_name,
- 'code_path': code_path,
- 'create_by': 'cursor',
- 'create_time': current_time,
- 'update_time': current_time
- }
-
- # 使用嵌套事务,确保task_list插入失败不影响主流程
- with db.session.begin_nested():
- db.session.execute(task_insert_sql, task_params)
-
- logger.info(f"成功将任务信息写入task_list表: task_name={script_name}")
-
- except Exception as task_error:
- # 记录错误但不中断主流程
- logger.error(f"写入task_list表失败: {str(task_error)}")
- # 如果要求必须成功写入任务列表,则这里应该raise task_error
- # raise task_error
-
- db.session.commit()
-
- logger.info(f"成功将脚本信息写入PG数据库: target_table={target_table}, script_name={script_name}")
-
- except Exception as e:
- db.session.rollback()
- logger.error(f"写入PG数据库失败: {str(e)}")
- raise e
-
- @staticmethod
- def _handle_children_relationships(dataflow_node, children_ids):
- """处理子节点关系"""
- logger.debug(f"处理子节点关系,原始children_ids: {children_ids}, 类型: {type(children_ids)}")
-
- # 确保children_ids是列表格式
- if not isinstance(children_ids, (list, tuple)):
- if children_ids is not None:
- children_ids = [children_ids] # 如果是单个值,转换为列表
- logger.debug(f"将单个值转换为列表: {children_ids}")
- else:
- children_ids = [] # 如果是None,转换为空列表
- logger.debug("将None转换为空列表")
-
- for child_id in children_ids:
- try:
- # 查找子节点
- query = "MATCH (n) WHERE id(n) = $child_id RETURN n"
- with connect_graph().session() as session:
- result = session.run(query, child_id=child_id).data()
-
- if result:
- child_node = result[0]['n']
-
- # 获取dataflow_node的ID
- dataflow_id = getattr(dataflow_node, 'identity', None)
- if dataflow_id is None:
- # 如果没有identity属性,从名称查询ID
- query_id = "MATCH (n:DataFlow) WHERE n.name_zh = $name_zh RETURN id(n) as node_id"
- id_result = session.run(query_id, name_zh=dataflow_node.get('name_zh')).single()
- dataflow_id = id_result['node_id'] if id_result else None
-
- # 创建关系 - 使用ID调用relationship_exists
- if dataflow_id and not relationship_exists(dataflow_id, 'child', child_id):
- session.run("MATCH (a), (b) WHERE id(a) = $dataflow_id AND id(b) = $child_id CREATE (a)-[:child]->(b)",
- dataflow_id=dataflow_id, child_id=child_id)
- logger.info(f"创建子节点关系: {dataflow_id} -> {child_id}")
- except Exception as e:
- logger.warning(f"创建子节点关系失败 {child_id}: {str(e)}")
-
- @staticmethod
- def _handle_tag_relationship(dataflow_id, tag_id):
- """处理标签关系"""
- try:
- # 查找标签节点
- query = "MATCH (n:DataLabel) WHERE id(n) = $tag_id RETURN n"
- with connect_graph().session() as session:
- result = session.run(query, tag_id=tag_id).data()
-
- if result:
- tag_node = result[0]['n']
-
- # 创建关系 - 使用ID调用relationship_exists
- if dataflow_id and not relationship_exists(dataflow_id, 'LABEL', tag_id):
- session.run("MATCH (a), (b) WHERE id(a) = $dataflow_id AND id(b) = $tag_id CREATE (a)-[:LABEL]->(b)",
- dataflow_id=dataflow_id, tag_id=tag_id)
- logger.info(f"创建标签关系: {dataflow_id} -> {tag_id}")
- except Exception as e:
- logger.warning(f"创建标签关系失败 {tag_id}: {str(e)}")
-
- @staticmethod
- def update_dataflow(dataflow_id: int, data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
- """
- 更新数据流
-
- Args:
- dataflow_id: 数据流ID
- data: 更新的数据
-
- Returns:
- 更新后的数据流信息,如果不存在则返回None
- """
- try:
- # 查找节点
- query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
- with connect_graph().session() as session:
- result = session.run(query, dataflow_id=dataflow_id).data()
-
- if not result:
- return None
-
- # 更新节点属性
- update_fields = []
- params: Dict[str, Any] = {'dataflow_id': dataflow_id}
-
- for key, value in data.items():
- if key not in ['id', 'created_at']: # 保护字段
- if key == 'config' and isinstance(value, dict):
- value = json.dumps(value, ensure_ascii=False)
- update_fields.append(f"n.{key} = ${key}")
- params[key] = value
-
- if update_fields:
- params['updated_at'] = get_formatted_time()
- update_fields.append("n.updated_at = $updated_at")
-
- update_query = f"""
- MATCH (n:DataFlow) WHERE id(n) = $dataflow_id
- SET {', '.join(update_fields)}
- RETURN n, id(n) as node_id
- """
-
- result = session.run(update_query, params).data()
-
- if result:
- node = result[0]['n']
- updated_dataflow = dict(node)
- updated_dataflow['id'] = result[0]['node_id'] # 使用查询返回的node_id
-
- logger.info(f"更新数据流成功: ID={dataflow_id}")
- return updated_dataflow
-
- return None
-
- except Exception as e:
- logger.error(f"更新数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def delete_dataflow(dataflow_id: int) -> bool:
- """
- 删除数据流
-
- Args:
- dataflow_id: 数据流ID
-
- Returns:
- 删除是否成功
- """
- try:
- # 删除节点及其关系
- query = """
- MATCH (n:DataFlow) WHERE id(n) = $dataflow_id
- DETACH DELETE n
- RETURN count(n) as deleted_count
- """
-
- with connect_graph().session() as session:
- delete_result = session.run(query, dataflow_id=dataflow_id).single()
- result = delete_result['deleted_count'] if delete_result else 0
-
- if result and result > 0:
- logger.info(f"删除数据流成功: ID={dataflow_id}")
- return True
-
- return False
-
- except Exception as e:
- logger.error(f"删除数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def execute_dataflow(dataflow_id: int, params: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
- """
- 执行数据流
-
- Args:
- dataflow_id: 数据流ID
- params: 执行参数
-
- Returns:
- 执行结果信息
- """
- try:
- # 检查数据流是否存在
- query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
- with connect_graph().session() as session:
- result = session.run(query, dataflow_id=dataflow_id).data()
-
- if not result:
- raise ValueError(f"数据流不存在: ID={dataflow_id}")
-
- execution_id = f"exec_{dataflow_id}_{int(datetime.now().timestamp())}"
-
- # TODO: 这里应该实际执行数据流
- # 目前返回模拟结果
- result = {
- 'execution_id': execution_id,
- 'dataflow_id': dataflow_id,
- 'status': 'running',
- 'started_at': datetime.now().isoformat(),
- 'params': params or {},
- 'progress': 0
- }
-
- logger.info(f"开始执行数据流: ID={dataflow_id}, execution_id={execution_id}")
- return result
- except Exception as e:
- logger.error(f"执行数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_dataflow_status(dataflow_id: int) -> Dict[str, Any]:
- """
- 获取数据流执行状态
-
- Args:
- dataflow_id: 数据流ID
-
- Returns:
- 执行状态信息
- """
- try:
- # TODO: 这里应该查询实际的执行状态
- # 目前返回模拟状态
- query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
- with connect_graph().session() as session:
- result = session.run(query, dataflow_id=dataflow_id).data()
-
- if not result:
- raise ValueError(f"数据流不存在: ID={dataflow_id}")
-
- status = ['running', 'completed', 'failed', 'pending'][dataflow_id % 4]
-
- return {
- 'dataflow_id': dataflow_id,
- 'status': status,
- 'progress': 100 if status == 'completed' else (dataflow_id * 10) % 100,
- 'started_at': datetime.now().isoformat(),
- 'completed_at': datetime.now().isoformat() if status == 'completed' else None,
- 'error_message': '执行过程中发生错误' if status == 'failed' else None
- }
- except Exception as e:
- logger.error(f"获取数据流状态失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_dataflow_logs(dataflow_id: int, page: int = 1, page_size: int = 50) -> Dict[str, Any]:
- """
- 获取数据流执行日志
-
- Args:
- dataflow_id: 数据流ID
- page: 页码
- page_size: 每页大小
-
- Returns:
- 执行日志列表和分页信息
- """
- try:
- # TODO: 这里应该查询实际的执行日志
- # 目前返回模拟日志
- query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
- with connect_graph().session() as session:
- result = session.run(query, dataflow_id=dataflow_id).data()
-
- if not result:
- raise ValueError(f"数据流不存在: ID={dataflow_id}")
-
- mock_logs = [
- {
- 'id': i,
- 'timestamp': datetime.now().isoformat(),
- 'level': ['INFO', 'WARNING', 'ERROR'][i % 3],
- 'message': f'数据流执行日志消息 {i}',
- 'component': ['source', 'transform', 'target'][i % 3]
- }
- for i in range(1, 101)
- ]
-
- # 分页处理
- total = len(mock_logs)
- start = (page - 1) * page_size
- end = start + page_size
- logs = mock_logs[start:end]
-
- return {
- 'logs': logs,
- 'pagination': {
- 'page': page,
- 'page_size': page_size,
- 'total': total,
- 'total_pages': (total + page_size - 1) // page_size
- }
- }
- except Exception as e:
- logger.error(f"获取数据流日志失败: {str(e)}")
- raise e
- @staticmethod
- def create_script(request_data: Union[Dict[str, Any], str]) -> str:
- """
- 使用Deepseek模型生成SQL脚本
-
- Args:
- request_data: 包含input, output, request_content的请求数据字典,或JSON字符串
-
- Returns:
- 生成的SQL脚本内容
- """
- try:
- logger.info(f"开始处理脚本生成请求: {request_data}")
- logger.info(f"request_data类型: {type(request_data)}")
-
- # 类型检查和处理
- if isinstance(request_data, str):
- logger.warning(f"request_data是字符串,尝试解析为JSON: {request_data}")
- try:
- import json
- request_data = json.loads(request_data)
- except json.JSONDecodeError as e:
- raise ValueError(f"无法解析request_data为JSON: {str(e)}")
-
- if not isinstance(request_data, dict):
- raise ValueError(f"request_data必须是字典类型,实际类型: {type(request_data)}")
-
- # 1. 从传入的request_data中解析input, output, request_content内容
- input_data = request_data.get('input', '')
- output_data = request_data.get('output', '')
-
- request_content = request_data.get('request_data', '')
-
- # 如果request_content是HTML格式,提取纯文本
- if request_content and (request_content.startswith('<p>') or '<' in request_content):
- # 简单的HTML标签清理
- import re
- request_content = re.sub(r'<[^>]+>', '', request_content).strip()
-
- if not input_data or not output_data or not request_content:
- raise ValueError(f"缺少必要参数:input='{input_data}', output='{output_data}', request_content='{request_content[:100] if request_content else ''}' 不能为空")
-
- logger.info(f"解析得到 - input: {input_data}, output: {output_data}, request_content: {request_content}")
-
- # 2. 解析input中的多个数据表并生成源表DDL
- source_tables_ddl = []
- input_tables = []
- if input_data:
- tables = [table.strip() for table in input_data.split(',') if table.strip()]
- for table in tables:
- ddl = DataFlowService._parse_table_and_get_ddl(table, 'input')
- if ddl:
- input_tables.append(table)
- source_tables_ddl.append(ddl)
- else:
- logger.warning(f"无法获取输入表 {table} 的DDL结构")
-
- # 3. 解析output中的数据表并生成目标表DDL
- target_table_ddl = ""
- if output_data:
- target_table_ddl = DataFlowService._parse_table_and_get_ddl(output_data.strip(), 'output')
- if not target_table_ddl:
- logger.warning(f"无法获取输出表 {output_data} 的DDL结构")
-
- # 4. 按照Deepseek-prompt.txt的框架构建提示语
- prompt_parts = []
-
- # 开场白 - 角色定义
- prompt_parts.append("你是一名数据库工程师,正在构建一个PostgreSQL数据中的汇总逻辑。请为以下需求生成一段标准的 PostgreSQL SQL 脚本:")
-
- # 动态生成源表部分(第1点)
- for i, (table, ddl) in enumerate(zip(input_tables, source_tables_ddl), 1):
- table_name = table.split(':')[-1] if ':' in table else table
- prompt_parts.append(f"{i}.有一个源表: {table_name},它的定义语句如下:")
- prompt_parts.append(ddl)
- prompt_parts.append("") # 添加空行分隔
-
- # 动态生成目标表部分(第2点)
- if target_table_ddl:
- target_table_name = output_data.split(':')[-1] if ':' in output_data else output_data
- next_index = len(input_tables) + 1
- prompt_parts.append(f"{next_index}.有一个目标表:{target_table_name},它的定义语句如下:")
- prompt_parts.append(target_table_ddl)
- prompt_parts.append("") # 添加空行分隔
-
- # 动态生成处理逻辑部分(第3点)
- next_index = len(input_tables) + 2 if target_table_ddl else len(input_tables) + 1
- prompt_parts.append(f"{next_index}.处理逻辑为:{request_content}")
- prompt_parts.append("") # 添加空行分隔
-
- # 固定的技术要求部分(第4-8点)
- tech_requirements = [
- f"{next_index + 1}.脚本应使用标准的 PostgreSQL 语法,适合在 Airflow、Python 脚本、或调度系统中调用;",
- f"{next_index + 2}.无需使用 UPSERT 或 ON CONFLICT",
- f"{next_index + 3}.请直接输出SQL,无需进行解释。",
- f"{next_index + 4}.请给这段sql起个英文名,不少于三个英文单词,使用\"_\"分隔,采用蛇形命名法。把sql的名字作为注释写在返回的sql中。",
- f"{next_index + 5}.生成的sql在向目标表插入数据的时候,向create_time字段写入当前日期时间now(),不用处理update_time字段"
- ]
-
- prompt_parts.extend(tech_requirements)
-
- # 组合完整的提示语
- full_prompt = "\n".join(prompt_parts)
-
- logger.info(f"构建的完整提示语长度: {len(full_prompt)}")
- logger.info(f"完整提示语内容: {full_prompt}")
-
- # 5. 调用LLM生成SQL脚本
- logger.info("开始调用Deepseek模型生成SQL脚本")
- script_content = llm_sql(full_prompt)
-
- if not script_content:
- raise ValueError("Deepseek模型返回空内容")
-
- # 确保返回的是文本格式
- if not isinstance(script_content, str):
- script_content = str(script_content)
-
- logger.info(f"SQL脚本生成成功,内容长度: {len(script_content)}")
-
- return script_content
-
- except Exception as e:
- logger.error(f"生成SQL脚本失败: {str(e)}")
- raise e
- @staticmethod
- def _parse_table_and_get_ddl(table_str: str, table_type: str) -> str:
- """
- 解析表格式(A:B)并从Neo4j查询元数据生成DDL
-
- Args:
- table_str: 表格式字符串,格式为"label:name_en"
- table_type: 表类型,用于日志记录(input/output)
-
- Returns:
- DDL格式的表结构字符串
- """
- try:
- # 解析A:B格式
- if ':' not in table_str:
- logger.error(f"表格式错误,应为'label:name_en'格式: {table_str}")
- return ""
-
- parts = table_str.split(':', 1)
- if len(parts) != 2:
- logger.error(f"表格式解析失败: {table_str}")
- return ""
-
- label = parts[0].strip()
- name_en = parts[1].strip()
-
- if not label or not name_en:
- logger.error(f"标签或英文名为空: label={label}, name_en={name_en}")
- return ""
-
- logger.info(f"开始查询{table_type}表: label={label}, name_en={name_en}")
-
- # 从Neo4j查询节点及其关联的元数据
- with connect_graph().session() as session:
- # 查询节点及其关联的元数据
- cypher = f"""
- MATCH (n:{label} {{name_en: $name_en}})
- OPTIONAL MATCH (n)-[:INCLUDES]->(m:DataMeta)
- RETURN n, collect(m) as metadata
- """
-
- result = session.run(cypher, {'name_en': name_en}) # type: ignore[arg-type]
- record = result.single()
-
- if not record:
- logger.error(f"未找到节点: label={label}, name_en={name_en}")
- return ""
-
- node = record['n']
- metadata = record['metadata']
-
- logger.info(f"找到节点,关联元数据数量: {len(metadata)}")
-
- # 生成DDL格式的表结构
- ddl_lines = []
- ddl_lines.append(f"CREATE TABLE {name_en} (")
-
- if metadata:
- column_definitions = []
- for meta in metadata:
- if meta: # 确保meta不为空
- meta_props = dict(meta)
- column_name = meta_props.get('name_en', meta_props.get('name_zh', 'unknown_column'))
- data_type = meta_props.get('data_type', 'VARCHAR(255)')
- comment = meta_props.get('name_zh', '')
-
- # 构建列定义
- column_def = f" {column_name} {data_type}"
- if comment:
- column_def += f" COMMENT '{comment}'"
-
- column_definitions.append(column_def)
-
- if column_definitions:
- ddl_lines.append(",\n".join(column_definitions))
- else:
- ddl_lines.append(" id BIGINT PRIMARY KEY COMMENT '主键ID'")
- else:
- # 如果没有元数据,添加默认列
- ddl_lines.append(" id BIGINT PRIMARY KEY COMMENT '主键ID'")
-
- ddl_lines.append(");")
-
- # 添加表注释
- node_props = dict(node)
- table_comment = node_props.get('name_zh', node_props.get('describe', name_en))
- if table_comment and table_comment != name_en:
- ddl_lines.append(f"COMMENT ON TABLE {name_en} IS '{table_comment}';")
-
- ddl_content = "\n".join(ddl_lines)
- logger.info(f"{table_type}表DDL生成成功: {name_en}")
- logger.debug(f"生成的DDL: {ddl_content}")
-
- return ddl_content
-
- except Exception as e:
- logger.error(f"解析表格式和生成DDL失败: {str(e)}")
- return ""
- @staticmethod
- def _generate_businessdomain_ddl(session, bd_id: int, is_target: bool = False, update_mode: str = 'append') -> Optional[Dict[str, Any]]:
- """
- 根据BusinessDomain节点ID生成DDL
-
- Args:
- session: Neo4j session对象
- bd_id: BusinessDomain节点ID
- is_target: 是否为目标表(目标表需要添加create_time字段)
- update_mode: 更新模式(append或full)
-
- Returns:
- 包含ddl和data_source信息的字典,如果节点不存在则返回None
- """
- try:
- # 查询BusinessDomain节点、元数据、标签关系和数据源关系
- cypher = """
- MATCH (bd:BusinessDomain)
- WHERE id(bd) = $bd_id
- OPTIONAL MATCH (bd)-[:INCLUDES]->(m:DataMeta)
- OPTIONAL MATCH (bd)-[:BELONGS_TO]->(label:DataLabel)
- OPTIONAL MATCH (bd)-[:COME_FROM]->(ds:DataSource)
- RETURN bd,
- collect(DISTINCT m) as metadata,
- label.name_zh as label_name,
- ds.type as ds_type,
- ds.host as ds_host,
- ds.port as ds_port,
- ds.database as ds_database
- """
- result = session.run(cypher, bd_id=bd_id).single()
-
- if not result or not result['bd']:
- logger.warning(f"未找到ID为 {bd_id} 的BusinessDomain节点")
- return None
-
- node = result['bd']
- metadata = result['metadata']
- label_name = result['label_name']
-
- # 生成DDL
- node_props = dict(node)
- table_name = node_props.get('name_en', f'table_{bd_id}')
-
- ddl_lines = []
- ddl_lines.append(f"CREATE TABLE {table_name} (")
-
- column_definitions = []
-
- # 添加元数据列
- if metadata:
- for meta in metadata:
- if meta:
- meta_props = dict(meta)
- column_name = meta_props.get('name_en', meta_props.get('name_zh', 'unknown_column'))
- data_type = meta_props.get('data_type', 'VARCHAR(255)')
- comment = meta_props.get('name_zh', '')
-
- column_def = f" {column_name} {data_type}"
- if comment:
- column_def += f" COMMENT '{comment}'"
- column_definitions.append(column_def)
-
- # 如果没有元数据,添加默认主键
- if not column_definitions:
- column_definitions.append(" id BIGINT PRIMARY KEY COMMENT '主键ID'")
-
- # 5. 如果是目标表,添加create_time字段
- if is_target:
- column_definitions.append(" create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT '数据创建时间'")
-
- ddl_lines.append(",\n".join(column_definitions))
- ddl_lines.append(");")
-
- # 添加表注释
- table_comment = node_props.get('name_zh', node_props.get('describe', table_name))
- if table_comment and table_comment != table_name:
- ddl_lines.append(f"COMMENT ON TABLE {table_name} IS '{table_comment}';")
-
- ddl_content = "\n".join(ddl_lines)
-
- # 3. 检查BELONGS_TO关系是否连接"数据资源",如果是则返回数据源信息
- data_source = None
- if label_name == '数据资源' and result['ds_type']:
- data_source = {
- 'type': result['ds_type'],
- 'host': result['ds_host'],
- 'port': result['ds_port'],
- 'database': result['ds_database']
- }
- logger.info(f"获取到数据源信息: {data_source}")
-
- logger.debug(f"生成BusinessDomain DDL成功: {table_name}, is_target={is_target}")
-
- return {
- 'ddl': ddl_content,
- 'table_name': table_name,
- 'data_source': data_source
- }
-
- except Exception as e:
- logger.error(f"生成BusinessDomain DDL失败,ID={bd_id}: {str(e)}")
- return None
- @staticmethod
- def _handle_script_relationships(data: Dict[str, Any],dataflow_name:str,name_en:str):
- """
- 处理脚本关系,在Neo4j图数据库中创建从source_table到target_table之间的DERIVED_FROM关系
-
- Args:
- data: 包含脚本信息的数据字典,应包含script_name, script_type, schedule_status, source_table, target_table, update_mode
- """
- try:
- # 从data中读取键值对
- script_name = dataflow_name,
- script_type = data.get('script_type', 'sql')
- schedule_status = data.get('status', 'inactive')
- source_table_full = data.get('source_table', '')
- target_table_full = data.get('target_table', '')
- update_mode = data.get('update_mode', 'full')
-
- # 处理source_table和target_table的格式
- source_table = source_table_full.split(':')[-1] if ':' in source_table_full else source_table_full
- target_table = target_table_full.split(':')[-1] if ':' in target_table_full else target_table_full
- source_label = source_table_full.split(':')[0] if ':' in source_table_full else source_table_full
- target_label = target_table_full.split(':')[0] if ':' in target_table_full else target_table_full
-
- # 验证必要字段
- if not source_table or not target_table:
- logger.warning(f"source_table或target_table为空,跳过关系创建: source_table={source_table}, target_table={target_table}")
- return
-
- logger.info(f"开始创建脚本关系: {source_table} -> {target_table}")
-
- with connect_graph().session() as session:
- # 创建或获取source和target节点
- create_nodes_query = f"""
- MERGE (source:{source_label} {{name: $source_table}})
- ON CREATE SET source.created_at = $created_at,
- source.type = 'source'
- WITH source
- MERGE (target:{target_label} {{name: $target_table}})
- ON CREATE SET target.created_at = $created_at,
- target.type = 'target'
- RETURN source, target, id(source) as source_id, id(target) as target_id
- """
-
- # 执行创建节点的查询
- result = session.run(create_nodes_query, { # type: ignore[arg-type]
- 'source_table': source_table,
- 'target_table': target_table,
- 'created_at': get_formatted_time()
- }).single()
-
- if result:
- source_id = result['source_id']
- target_id = result['target_id']
-
- # 检查并创建关系
- create_relationship_query = f"""
- MATCH (source:{source_label}), (target:{target_label})
- WHERE id(source) = $source_id AND id(target) = $target_id
- AND NOT EXISTS((target)-[:DERIVED_FROM]->(source))
- CREATE (target)-[r:DERIVED_FROM]->(source)
- SET r.script_name = $script_name,
- r.script_type = $script_type,
- r.schedule_status = $schedule_status,
- r.update_mode = $update_mode,
- r.created_at = $created_at,
- r.updated_at = $created_at
- RETURN r
- """
-
- relationship_result = session.run(create_relationship_query, { # type: ignore[arg-type]
- 'source_id': source_id,
- 'target_id': target_id,
- 'script_name': script_name,
- 'script_type': script_type,
- 'schedule_status': schedule_status,
- 'update_mode': update_mode,
- 'created_at': get_formatted_time()
- }).single()
-
- if relationship_result:
- logger.info(f"成功创建DERIVED_FROM关系: {target_table} -> {source_table} (script: {script_name})")
- else:
- logger.info(f"DERIVED_FROM关系已存在: {target_table} -> {source_table}")
- else:
- logger.error(f"创建表节点失败: source_table={source_table}, target_table={target_table}")
-
- except Exception as e:
- logger.error(f"处理脚本关系失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_business_domain_list() -> List[Dict[str, Any]]:
- """
- 获取BusinessDomain节点列表
-
- Returns:
- BusinessDomain节点列表,每个节点包含 id, name_zh, name_en, tag
- """
- try:
- logger.info("开始查询BusinessDomain节点列表")
-
- with connect_graph().session() as session:
- # 查询所有BusinessDomain节点及其BELONGS_TO关系指向的标签
- query = """
- MATCH (bd:BusinessDomain)
- OPTIONAL MATCH (bd)-[:BELONGS_TO]->(label:DataLabel)
- RETURN id(bd) as id,
- bd.name_zh as name_zh,
- bd.name_en as name_en,
- label.name_zh as tag
- ORDER BY bd.create_time DESC
- """
-
- result = session.run(query)
-
- bd_list = []
- for record in result:
- bd_item = {
- "id": record["id"],
- "name_zh": record["name_zh"] if record["name_zh"] else "",
- "name_en": record["name_en"] if record["name_en"] else "",
- "tag": record["tag"] if record["tag"] else ""
- }
- bd_list.append(bd_item)
-
- logger.info(f"成功查询到 {len(bd_list)} 个BusinessDomain节点")
- return bd_list
-
- except Exception as e:
- logger.error(f"查询BusinessDomain节点列表失败: {str(e)}")
- raise e
|