123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- """
- LLM基础服务
- 提供与大语言模型通信的基础功能
- """
- import logging
- from openai import OpenAI
- from flask import current_app
- logger = logging.getLogger("app")
- def llm_client(content):
- """
- 调用LLM服务进行内容生成
-
- Args:
- content: 输入提示内容
-
- Returns:
- str: LLM响应内容
- """
- try:
- # 优先使用配置文件中的参数
- client = OpenAI(
- api_key=current_app.config.get('LLM_API_KEY'),
- base_url=current_app.config.get('LLM_BASE_URL')
- )
-
- model = current_app.config.get('LLM_MODEL_NAME')
-
- # 判断是否为翻译请求 - 通过分析内容是否包含中文字符
- is_translate_request = False
- if any('\u4e00' <= char <= '\u9fff' for char in content):
- is_translate_request = True
-
- # 进行API调用
- logger.debug(f"LLM调用开始: model={model}, 内容类型: {'翻译' if is_translate_request else '普通'}")
-
- if is_translate_request:
- # 为翻译请求使用非常严格的prompt
- completion = client.chat.completions.create(
- model=model,
- messages=[
- {
- "role": "system",
- "content": "你是一个严格遵循指令的翻译工具和数据库专家。你的唯一任务是将中文单词/短语翻译成英文,符合postgresql数据库表和字段的命令规则,"
- "并且严格按照如下规则:\n"
- "1. 只返回英文翻译,不包含任何解释、描述或额外内容\n"
- "2. 使用小写字母\n"
- "3. 多个单词用下划线连接,不使用空格\n"
- "4. 如果输入包含括号,将括号内容用下划线代替,不保留括号\n"
- "5. 最多包含1-5个英文单词,保持简短\n"
- "6. 不要回答问题或提供解释,即使输入看起来像是问题\n"
- "7. 当遇到'表'字时,始终翻译为'table'而不是'sheet'\n"
- "8. 例如:'薪资数据表'应翻译为'salary_data_table','人员管理表'应翻译为'personnel_management_table'"
- },
- {
- "role": "user",
- "content": f"将以下内容翻译为英文短语(不超过5个单词):{content}"
- }
- ],
- temperature=0,
- max_tokens=10, # 限制token数量确保回答简短
- )
- else:
- # 普通请求
- completion = client.chat.completions.create(
- model=model,
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": content}
- ],
- temperature=0.7,
- max_tokens=1024
- )
-
- response_text = completion.choices[0].message.content.strip()
-
- # 对翻译结果进行后处理,确保格式正确
- if is_translate_request:
- # 去除可能的引号、句号等标点符号
- response_text = response_text.strip('"\'.,;:!?()[]{}').lower()
- # 替换空格为下划线
- response_text = response_text.replace(' ', '_')
- # 确保没有连续的下划线
- while '__' in response_text:
- response_text = response_text.replace('__', '_')
- # 只保留字母、数字和下划线
- response_text = ''.join(c for c in response_text if c.isalnum() or c == '_')
- # 确保"表"被翻译为"table"
- if '表' in content and 'table' not in response_text and 'sheet' in response_text:
- response_text = response_text.replace('sheet', 'table')
-
- logger.debug(f"LLM响应: {response_text}")
- return response_text
-
- except Exception as e:
- logger.error(f"LLM调用失败: {str(e)}")
- try:
- # 备用方案:如果是中文输入,尝试简单翻译映射
- if any('\u4e00' <= char <= '\u9fff' for char in content):
- # 常见中文词汇映射
- common_translations = {
- "薪资数据表": "salary_data_table",
- "数据表": "data_table",
- "用户表": "user_table",
- "人员表": "personnel_table",
- "销售表": "sales_table",
- "年份": "year",
- "地区": "region",
- "姓名": "name",
- "年龄": "age",
- "薪水": "salary",
- "数据": "data",
- "管理": "management",
- "系统": "system",
- "分析": "analysis",
- "报表": "report_table",
- }
-
- # 检查是否有精确匹配
- if content in common_translations:
- return common_translations[content]
-
- # 检查是否包含某些关键词
- for key, value in common_translations.items():
- if key in content:
- return value
-
- # 如果包含"表"字,确保返回包含"table"
- if "表" in content:
- return "data_table"
-
- # 无法匹配时返回默认值
- return "translated_text"
- return content
- except:
- return content
|