123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365 |
- import logging
- from typing import Dict, List, Optional, Any
- from datetime import datetime
- import json
- from app.core.llm.llm_service import llm_client
- logger = logging.getLogger(__name__)
- class DataFlowService:
- """数据流服务类,处理数据流相关的业务逻辑"""
-
- @staticmethod
- def get_dataflows(page: int = 1, page_size: int = 10, search: str = '') -> Dict[str, Any]:
- """
- 获取数据流列表
-
- Args:
- page: 页码
- page_size: 每页大小
- search: 搜索关键词
-
- Returns:
- 包含数据流列表和分页信息的字典
- """
- try:
- # TODO: 这里应该从数据库查询数据流列表
- # 目前返回模拟数据
- mock_dataflows = [
- {
- 'id': i,
- 'name': f'数据流_{i}',
- 'description': f'这是第{i}个数据流的描述',
- 'status': 'active' if i % 2 == 0 else 'inactive',
- 'created_at': datetime.now().isoformat(),
- 'updated_at': datetime.now().isoformat(),
- 'created_by': f'user_{i % 3 + 1}'
- }
- for i in range(1, 21)
- ]
-
- # 简单的搜索过滤
- if search:
- mock_dataflows = [
- df for df in mock_dataflows
- if search.lower() in df['name'].lower() or search.lower() in df['description'].lower()
- ]
-
- # 分页处理
- total = len(mock_dataflows)
- start = (page - 1) * page_size
- end = start + page_size
- dataflows = mock_dataflows[start:end]
-
- return {
- 'list': dataflows,
- 'pagination': {
- 'page': page,
- 'page_size': page_size,
- 'total': total,
- 'total_pages': (total + page_size - 1) // page_size
- }
- }
- except Exception as e:
- logger.error(f"获取数据流列表失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_dataflow_by_id(dataflow_id: int) -> Optional[Dict[str, Any]]:
- """
- 根据ID获取数据流详情
-
- Args:
- dataflow_id: 数据流ID
-
- Returns:
- 数据流详情字典,如果不存在则返回None
- """
- try:
- # TODO: 这里应该从数据库查询指定的数据流
- # 目前返回模拟数据
- if dataflow_id <= 0 or dataflow_id > 20:
- return None
-
- return {
- 'id': dataflow_id,
- 'name': f'数据流_{dataflow_id}',
- 'description': f'这是第{dataflow_id}个数据流的详细描述',
- 'status': 'active' if dataflow_id % 2 == 0 else 'inactive',
- 'created_at': datetime.now().isoformat(),
- 'updated_at': datetime.now().isoformat(),
- 'created_by': f'user_{dataflow_id % 3 + 1}',
- 'config': {
- 'source': {
- 'type': 'database',
- 'connection': 'mysql://localhost:3306/test'
- },
- 'target': {
- 'type': 'file',
- 'path': '/data/output/'
- },
- 'transformations': [
- {'type': 'filter', 'condition': 'age > 18'},
- {'type': 'aggregate', 'group_by': 'department', 'function': 'count'}
- ]
- }
- }
- except Exception as e:
- logger.error(f"获取数据流详情失败: {str(e)}")
- raise e
-
- @staticmethod
- def create_dataflow(data: Dict[str, Any]) -> Dict[str, Any]:
- """
- 创建新的数据流
-
- Args:
- data: 数据流配置数据
-
- Returns:
- 创建的数据流信息
- """
- try:
- # TODO: 这里应该验证数据并保存到数据库
- # 目前返回模拟数据
- required_fields = ['name', 'description']
- for field in required_fields:
- if field not in data:
- raise ValueError(f"缺少必填字段: {field}")
-
- new_dataflow = {
- 'id': 21, # 模拟新生成的ID
- 'name': data['name'],
- 'description': data['description'],
- 'status': 'inactive',
- 'created_at': datetime.now().isoformat(),
- 'updated_at': datetime.now().isoformat(),
- 'created_by': 'current_user',
- 'config': data.get('config', {})
- }
-
- logger.info(f"创建数据流成功: {new_dataflow['name']}")
- return new_dataflow
- except Exception as e:
- logger.error(f"创建数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def update_dataflow(dataflow_id: int, data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
- """
- 更新数据流
-
- Args:
- dataflow_id: 数据流ID
- data: 更新的数据
-
- Returns:
- 更新后的数据流信息,如果不存在则返回None
- """
- try:
- # TODO: 这里应该更新数据库中的数据流
- # 目前返回模拟数据
- if dataflow_id <= 0 or dataflow_id > 20:
- return None
-
- updated_dataflow = {
- 'id': dataflow_id,
- 'name': data.get('name', f'数据流_{dataflow_id}'),
- 'description': data.get('description', f'这是第{dataflow_id}个数据流的描述'),
- 'status': data.get('status', 'active' if dataflow_id % 2 == 0 else 'inactive'),
- 'created_at': datetime.now().isoformat(),
- 'updated_at': datetime.now().isoformat(),
- 'created_by': f'user_{dataflow_id % 3 + 1}',
- 'config': data.get('config', {})
- }
-
- logger.info(f"更新数据流成功: ID={dataflow_id}")
- return updated_dataflow
- except Exception as e:
- logger.error(f"更新数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def delete_dataflow(dataflow_id: int) -> bool:
- """
- 删除数据流
-
- Args:
- dataflow_id: 数据流ID
-
- Returns:
- 删除是否成功
- """
- try:
- # TODO: 这里应该从数据库删除数据流
- # 目前返回模拟结果
- if dataflow_id <= 0 or dataflow_id > 20:
- return False
-
- logger.info(f"删除数据流成功: ID={dataflow_id}")
- return True
- except Exception as e:
- logger.error(f"删除数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def execute_dataflow(dataflow_id: int, params: Dict[str, Any] = None) -> Dict[str, Any]:
- """
- 执行数据流
-
- Args:
- dataflow_id: 数据流ID
- params: 执行参数
-
- Returns:
- 执行结果信息
- """
- try:
- # TODO: 这里应该实际执行数据流
- # 目前返回模拟结果
- if dataflow_id <= 0 or dataflow_id > 20:
- raise ValueError(f"数据流不存在: ID={dataflow_id}")
-
- execution_id = f"exec_{dataflow_id}_{int(datetime.now().timestamp())}"
-
- result = {
- 'execution_id': execution_id,
- 'dataflow_id': dataflow_id,
- 'status': 'running',
- 'started_at': datetime.now().isoformat(),
- 'params': params or {},
- 'progress': 0
- }
-
- logger.info(f"开始执行数据流: ID={dataflow_id}, execution_id={execution_id}")
- return result
- except Exception as e:
- logger.error(f"执行数据流失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_dataflow_status(dataflow_id: int) -> Dict[str, Any]:
- """
- 获取数据流执行状态
-
- Args:
- dataflow_id: 数据流ID
-
- Returns:
- 执行状态信息
- """
- try:
- # TODO: 这里应该查询实际的执行状态
- # 目前返回模拟状态
- if dataflow_id <= 0 or dataflow_id > 20:
- raise ValueError(f"数据流不存在: ID={dataflow_id}")
-
- status = ['running', 'completed', 'failed', 'pending'][dataflow_id % 4]
-
- return {
- 'dataflow_id': dataflow_id,
- 'status': status,
- 'progress': 100 if status == 'completed' else (dataflow_id * 10) % 100,
- 'started_at': datetime.now().isoformat(),
- 'completed_at': datetime.now().isoformat() if status == 'completed' else None,
- 'error_message': '执行过程中发生错误' if status == 'failed' else None
- }
- except Exception as e:
- logger.error(f"获取数据流状态失败: {str(e)}")
- raise e
-
- @staticmethod
- def get_dataflow_logs(dataflow_id: int, page: int = 1, page_size: int = 50) -> Dict[str, Any]:
- """
- 获取数据流执行日志
-
- Args:
- dataflow_id: 数据流ID
- page: 页码
- page_size: 每页大小
-
- Returns:
- 执行日志列表和分页信息
- """
- try:
- # TODO: 这里应该查询实际的执行日志
- # 目前返回模拟日志
- if dataflow_id <= 0 or dataflow_id > 20:
- raise ValueError(f"数据流不存在: ID={dataflow_id}")
-
- mock_logs = [
- {
- 'id': i,
- 'timestamp': datetime.now().isoformat(),
- 'level': ['INFO', 'WARNING', 'ERROR'][i % 3],
- 'message': f'数据流执行日志消息 {i}',
- 'component': ['source', 'transform', 'target'][i % 3]
- }
- for i in range(1, 101)
- ]
-
- # 分页处理
- total = len(mock_logs)
- start = (page - 1) * page_size
- end = start + page_size
- logs = mock_logs[start:end]
-
- return {
- 'logs': logs,
- 'pagination': {
- 'page': page,
- 'page_size': page_size,
- 'total': total,
- 'total_pages': (total + page_size - 1) // page_size
- }
- }
- except Exception as e:
- logger.error(f"获取数据流日志失败: {str(e)}")
- raise e
- @staticmethod
- def create_script(request_data: str) -> str:
- """
- 使用Deepseek模型生成脚本
-
- Args:
- request_data: 请求数据,用户需求的文本描述
-
- Returns:
- 生成的脚本内容(TXT格式)
- """
- try:
- # 构建prompt
- prompt_parts = []
-
- # 添加系统提示
- prompt_parts.append("请根据以下需求生成相应的数据处理脚本:")
-
- # 直接将request_data作为文本描述添加到prompt中
- prompt_parts.append(request_data)
-
- # 添加格式要求
- prompt_parts.append("\n请生成完整可执行的脚本代码,包含必要的注释和错误处理。")
-
- # 组合prompt
- full_prompt = "\n\n".join(prompt_parts)
-
- logger.info(f"开始调用Deepseek模型生成脚本,prompt长度: {len(full_prompt)}")
-
- # 调用LLM服务
- script_content = llm_client(full_prompt)
-
- if not script_content:
- raise ValueError("Deepseek模型返回空内容")
-
- # 确保返回的是文本格式
- if not isinstance(script_content, str):
- script_content = str(script_content)
-
- logger.info(f"脚本生成成功,内容长度: {len(script_content)}")
-
- return script_content
-
- except Exception as e:
- logger.error(f"生成脚本失败: {str(e)}")
- raise e
|