model.py 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. """
  2. 数据模型核心业务逻辑模块
  3. 本模块包含了数据模型相关的所有核心业务逻辑函数,包括:
  4. - 数据模型的创建、更新、删除
  5. - 数据模型与数据资源、元数据之间的关系处理
  6. - 数据模型血缘关系管理
  7. - 数据模型图谱生成
  8. - 数据模型层级计算等功能
  9. """
  10. import math
  11. import threading
  12. from concurrent.futures import ThreadPoolExecutor
  13. import pandas as pd
  14. from py2neo import Relationship
  15. import logging
  16. import json
  17. from app.core.graph.graph_operations import relationship_exists
  18. from app.core.graph.graph_operations import connect_graph,create_or_get_node,get_node
  19. from app.services.neo4j_driver import neo4j_driver
  20. from app.core.meta_data import get_formatted_time, handle_id_unstructured
  21. from app.core.common import delete_relationships, update_or_create_node, get_node_by_id_no_label
  22. from app.core.data_resource.resource import get_node_by_id
  23. # 根据child关系计算数据模型当前的level自动保存
  24. def calculate_model_level(id):
  25. """
  26. 根据child关系计算数据模型当前的level并自动保存
  27. Args:
  28. id: 数据模型的节点ID(整数)
  29. Returns:
  30. None
  31. """
  32. # 确保id是整数类型
  33. node_id = int(id) if id is not None else None
  34. cql = """
  35. MATCH (start_node:data_model)
  36. WHERE id(start_node) = $nodeId
  37. CALL {
  38. WITH start_node
  39. OPTIONAL MATCH path = (start_node)-[:child*]->(end_node)
  40. RETURN length(path) AS level
  41. }
  42. WITH coalesce(max(level), 0) AS max_level
  43. RETURN max_level
  44. """
  45. with connect_graph().session() as session:
  46. result = session.run(cql, nodeId=node_id)
  47. record = result.single()
  48. data = record["max_level"] if record and "max_level" in record else 0
  49. # 更新level属性
  50. update_query = """
  51. MATCH (n:data_model)
  52. WHERE id(n) = $nodeId
  53. SET n.level = $level
  54. RETURN n
  55. """
  56. session.run(update_query, nodeId=node_id, level=data)
  57. # 处理数据模型血缘关系
  58. def handle_model_relation(resource_ids):
  59. """
  60. 处理数据模型血缘关系
  61. Args:
  62. resource_ids: 数据资源ID
  63. Returns:
  64. 血缘关系数据
  65. """
  66. query = """
  67. MATCH (search:data_resource)-[:connection]->(common_node:meta_node)<-[:connection]-(connect:data_resource)
  68. WHERE id(search) = $resource_Ids
  69. WITH search, connect, common_node
  70. MATCH (search)-[:connection]->(search_node:meta_node)
  71. WITH search, connect, common_node, collect(DISTINCT id(search_node)) AS search_nodes
  72. MATCH (connect)-[:connection]->(connect_node:meta_node)
  73. WITH search, connect, common_node, search_nodes, collect(DISTINCT id(connect_node)) AS connect_nodes
  74. WITH search, connect, search_nodes, connect_nodes, collect(DISTINCT id(common_node)) AS common_nodes
  75. // 剔除 search_nodes 和 connect_nodes 中包含在 common_nodes 中的内容
  76. WITH search, connect, common_nodes,
  77. [node IN search_nodes WHERE NOT node IN common_nodes] AS filtered_search_nodes,
  78. [node IN connect_nodes WHERE NOT node IN common_nodes] AS filtered_connect_nodes
  79. RETURN id(connect) as blood_resources, common_nodes,
  80. filtered_search_nodes as origin_nodes, filtered_connect_nodes as blood_nodes
  81. """
  82. with connect_graph().session() as session:
  83. result = session.run(query, resource_Ids=resource_ids)
  84. return result.data()
  85. # 创建一个数据模型节点
  86. def handle_data_model(data_model, result_list, result, receiver):
  87. """
  88. 创建一个数据模型节点
  89. Args:
  90. data_model: 数据模型名称
  91. result_list: 数据模型英文名列表
  92. result: 序列化的ID列表
  93. receiver: 接收到的请求参数
  94. Returns:
  95. tuple: (id, data_model_node)
  96. """
  97. # 添加数据资源 血缘关系的字段 blood_resource
  98. data_model_en = result_list[0] if result_list and len(result_list) > 0 else ""
  99. receiver['id_list'] = result
  100. add_attribute = {
  101. 'time': get_formatted_time(),
  102. 'en_name': data_model_en
  103. }
  104. receiver.update(add_attribute)
  105. data_model_node = get_node('data_model', name=data_model) or create_or_get_node('data_model', **receiver)
  106. child_list = receiver.get('childrenId', [])
  107. for child_id in child_list:
  108. child_node = get_node_by_id_no_label(child_id)
  109. if child_node and not relationship_exists(data_model_node, 'child', child_node):
  110. with connect_graph().session() as session:
  111. relationship = Relationship(data_model_node, 'child', child_node)
  112. session.execute_write(
  113. lambda tx: tx.run(
  114. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:child]->(b)",
  115. a_id=data_model_node.id, b_id=child_node.id
  116. )
  117. )
  118. # 根据传入参数id,和数据标签建立关系
  119. if receiver.get('tag'):
  120. # 使用 Cypher 查询通过 id 查找节点
  121. tag = get_node_by_id('data_label', receiver['tag'])
  122. if tag and not relationship_exists(data_model_node, 'label', tag):
  123. with connect_graph().session() as session:
  124. session.execute_write(
  125. lambda tx: tx.run(
  126. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:label]->(b)",
  127. a_id=data_model_node.id, b_id=tag.id
  128. )
  129. )
  130. # 获取节点ID
  131. node_id = None
  132. if hasattr(data_model_node, 'id'):
  133. node_id = data_model_node.id
  134. else:
  135. # 如果节点没有id属性,尝试通过查询获取
  136. query = """
  137. MATCH (n:data_model {name: $name})
  138. RETURN id(n) as node_id
  139. """
  140. with connect_graph().session() as session:
  141. result = session.run(query, name=data_model)
  142. record = result.single()
  143. if record and "node_id" in record:
  144. node_id = record["node_id"]
  145. return node_id, data_model_node
  146. # (从数据资源中选取)
  147. def resource_handle_meta_data_model(id_lists, data_model_node_id):
  148. """
  149. 处理从数据资源中选取的数据模型与元数据的关系
  150. Args:
  151. id_lists: ID列表
  152. data_model_node_id: 数据模型节点ID
  153. Returns:
  154. None
  155. """
  156. # 构建meta_id和resouce_id的列表
  157. resouce_ids = [record['resource_id'] for record in id_lists]
  158. meta_ids = [record['id'] for id_list in id_lists for record in id_list['metaData']]
  159. metaData = [record['data_standard'] for id_list in id_lists for record in id_list['metaData']]
  160. # 创建与meta_node的关系 组成关系
  161. if meta_ids:
  162. query = """
  163. MATCH (source:data_model), (target:meta_node)
  164. WHERE id(source)=$source_id AND id(target) IN $target_ids
  165. MERGE (source)-[:component]->(target)
  166. """
  167. with neo4j_driver.get_session() as session:
  168. session.run(query, source_id=data_model_node_id, target_ids=meta_ids)
  169. # 创建与data_resource的关系 资源关系
  170. if resouce_ids:
  171. query = """
  172. MATCH (source:data_model), (target:data_resource)
  173. WHERE id(source)=$source_id AND id(target) IN $target_ids
  174. MERGE (source)-[:resource]->(target)
  175. """
  176. with neo4j_driver.get_session() as session:
  177. session.run(query, source_id=data_model_node_id, target_ids=resouce_ids)
  178. # (从数据模型中选取)
  179. def model_handle_meta_data_model(id_lists, data_model_node_id):
  180. """
  181. 处理从数据模型中选取的数据模型与元数据的关系
  182. Args:
  183. id_lists: ID列表
  184. data_model_node_id: 数据模型节点ID
  185. Returns:
  186. None
  187. """
  188. # 构建meta_id和model_id的列表
  189. model_ids = [record['model_id'] for record in id_lists]
  190. meta_ids = [record['id'] for id_list in id_lists for record in id_list['metaData']]
  191. # 创建与meta_node的关系 组成关系
  192. if meta_ids:
  193. query = """
  194. MATCH (source:data_model), (target:meta_node)
  195. WHERE id(source)=$source_id AND id(target) IN $target_ids
  196. MERGE (source)-[:component]->(target)
  197. """
  198. with neo4j_driver.get_session() as session:
  199. session.run(query, source_id=data_model_node_id, target_ids=meta_ids)
  200. # 创建与data_model的关系 模型关系
  201. if model_ids:
  202. query = """
  203. MATCH (source:data_model), (target:data_model)
  204. WHERE id(source)=$source_id AND id(target) IN $target_ids
  205. MERGE (source)-[:use]->(target)
  206. """
  207. with neo4j_driver.get_session() as session:
  208. session.run(query, source_id=data_model_node_id, target_ids=model_ids)
  209. # (从DDL中选取)
  210. def handle_no_meta_data_model(id_lists, receiver, data_model_node):
  211. """
  212. 处理从DDL中选取的没有元数据的数据模型
  213. Args:
  214. id_lists: ID列表
  215. receiver: 接收到的请求参数
  216. data_model_node: 数据模型节点
  217. Returns:
  218. None
  219. """
  220. # 构建meta_id和resouce_id的列表
  221. resouce_ids = [record['resource_id'] for record in id_lists]
  222. meta_ids = [record['id'] for id_list in id_lists for record in id_list['metaData']]
  223. # 获取数据模型节点ID
  224. data_model_node_id = None
  225. if hasattr(data_model_node, 'id'):
  226. data_model_node_id = data_model_node.id
  227. else:
  228. # 如果节点没有id属性,尝试通过查询获取
  229. query = """
  230. MATCH (n:data_model {name: $name})
  231. RETURN id(n) as node_id
  232. """
  233. with connect_graph().session() as session:
  234. result = session.run(query, name=data_model_node.get('name'))
  235. record = result.single()
  236. if record:
  237. data_model_node_id = record["node_id"]
  238. if not data_model_node_id:
  239. return
  240. # 创建与data_resource的关系 资源关系
  241. if resouce_ids:
  242. query = """
  243. MATCH (source:data_model), (target:data_resource)
  244. WHERE id(source)=$source_id AND id(target) IN $target_ids
  245. MERGE (source)-[:resource]->(target)
  246. """
  247. with connect_graph().session() as session:
  248. session.run(query, source_id=data_model_node_id, target_ids=resouce_ids)
  249. if meta_ids:
  250. meta_node_list = []
  251. for id in meta_ids:
  252. query = """
  253. MATCH (n)
  254. WHERE id(n) = $node_id
  255. RETURN n
  256. """
  257. with connect_graph().session() as session:
  258. result = session.run(query, node_id=id)
  259. if result:
  260. record = result.data()
  261. if record:
  262. meta_node_list.append(record[0]['n'])
  263. # 提取接收到的数据并创建meta_node节点
  264. meta_node = None
  265. resource_ids = []
  266. for item in id_lists:
  267. resource_id = item['resource_id']
  268. resource_ids.append(resource_id)
  269. for meta_item in item['metaData']:
  270. meta_id = meta_item['id']
  271. data_standard = meta_item.get('data_standard', '')
  272. en_name_zh = meta_item.get('en_name_zh', '')
  273. data_name = meta_item.get('data_name', '')
  274. # 使用传递的参数创建meta_node节点
  275. meta_params = {
  276. 'name': data_name,
  277. 'cn_name': en_name_zh,
  278. 'standard': data_standard,
  279. 'time': get_formatted_time()
  280. }
  281. # 创建meta_node节点
  282. meta_node = create_or_get_node('meta_node', **meta_params)
  283. # 创建与data_model的关系
  284. if meta_node and not relationship_exists(data_model_node, 'component', meta_node):
  285. with connect_graph().session() as session:
  286. session.execute_write(
  287. lambda tx: tx.run(
  288. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:component]->(b)",
  289. a_id=data_model_node.id, b_id=meta_node.id
  290. )
  291. )
  292. # 数据模型-详情接口
  293. def handle_id_model(id):
  294. """
  295. 处理数据模型详情请求,查询指定ID的数据模型节点的完整信息
  296. Args:
  297. id: 数据模型节点ID
  298. Returns:
  299. dict: 包含数据模型完整详情信息的字典
  300. """
  301. try:
  302. # 确保id是整数类型
  303. node_id = int(id) if id is not None else None
  304. logging.info(f"查询数据模型详情,ID: {node_id}")
  305. # 构建Cypher查询 - 查询模型基本信息和关联节点
  306. cql = """
  307. MATCH (n:data_model)
  308. WHERE id(n) = $nodeId
  309. // 获取与模型关联的资源节点
  310. OPTIONAL MATCH (n)-[:resource]->(resource:data_resource)
  311. // 获取与模型关联的数据源节点
  312. OPTIONAL MATCH (n)-[:use]->(source:data_source)
  313. // 获取模型的标签
  314. OPTIONAL MATCH (n)-[:label]->(tag:data_label)
  315. // 获取模型的下级节点(子节点)
  316. OPTIONAL MATCH (n)-[:child]->(child:data_model)
  317. // 获取模型关联的元数据节点
  318. OPTIONAL MATCH (n)-[:component]->(meta:meta_node)
  319. // 收集所有关联节点信息
  320. WITH n,
  321. collect(DISTINCT resource) AS resources,
  322. collect(DISTINCT source) AS sources,
  323. tag,
  324. collect(DISTINCT {id: id(child), name: child.name, en_name: child.en_name}) AS children,
  325. collect(DISTINCT meta) AS meta_nodes
  326. RETURN {
  327. // 基本信息
  328. id: id(n),
  329. name: n.name,
  330. en_name: n.en_name,
  331. // 标签信息从tag变量中获取
  332. label: tag.name,
  333. time: n.time,
  334. description: n.description,
  335. category: n.category,
  336. level: n.level,
  337. // 标签信息
  338. tag: CASE
  339. WHEN tag IS NOT NULL THEN {id: id(tag), name: tag.name}
  340. ELSE null
  341. END,
  342. // 关联的资源列表
  343. resources: [resource IN resources WHERE resource IS NOT NULL | {
  344. id: id(resource),
  345. name: resource.name,
  346. en_name: resource.en_name,
  347. description: resource.description
  348. }],
  349. // 关联的数据源列表
  350. sources: [source IN sources WHERE source IS NOT NULL | {
  351. id: id(source),
  352. name: source.name,
  353. en_name: source.en_name
  354. }],
  355. // 子节点列表
  356. children: children,
  357. // 元数据列表
  358. meta_nodes: [meta IN meta_nodes WHERE meta IS NOT NULL | {
  359. id: id(meta),
  360. name: meta.name,
  361. en_name: meta.en_name,
  362. data_type: meta.data_type
  363. }],
  364. // 原始属性
  365. properties: properties(n)
  366. } AS result
  367. """
  368. with connect_graph().session() as session:
  369. result = session.run(cql, nodeId=node_id)
  370. # 处理查询结果
  371. record = result.single()
  372. logging.info(f"获得查询结果---------->>>{record}")
  373. # 直接检查record是否存在,而不是检查"result"键
  374. if record:
  375. # 已经包含"result"键,直接获取其值
  376. data_model = record["result"]
  377. logging.info(f"成功获取数据模型详情,ID: {node_id}")
  378. return data_model
  379. else:
  380. logging.warning(f"未找到ID为 {node_id} 的数据模型")
  381. return {}
  382. except Exception as e:
  383. logging.error(f"获取数据模型详情出错: {str(e)}", exc_info=True)
  384. return {}
  385. # 数据模型列表
  386. def model_list(skip_count, page_size, en_name_filter=None, name_filter=None,
  387. category=None, tag=None, level=None):
  388. """
  389. 获取数据模型列表
  390. Args:
  391. skip_count: 跳过的数量
  392. page_size: 页面大小
  393. en_name_filter: 英文名称过滤条件
  394. name_filter: 名称过滤条件
  395. category: 类别过滤条件
  396. tag: 标签过滤条件
  397. level: 层级过滤条件
  398. Returns:
  399. tuple: (数据模型列表, 总数量)
  400. """
  401. try:
  402. # 构建where子句
  403. where_clause = []
  404. params = {}
  405. if name_filter is not None:
  406. where_clause.append("n.name =~ $name")
  407. params['name'] = f".*{name_filter}.*"
  408. if en_name_filter is not None:
  409. where_clause.append("n.en_name =~ $en_name")
  410. params['en_name'] = f".*{en_name_filter}.*"
  411. if category is not None:
  412. where_clause.append("n.category = $category")
  413. params['category'] = category
  414. if level is not None:
  415. where_clause.append("n.level = $level")
  416. params['level'] = level
  417. if tag is not None:
  418. where_clause.append("id(t) = $tag")
  419. params['tag'] = tag
  420. # 处理where子句
  421. where_str = " AND ".join(where_clause)
  422. if where_str:
  423. where_str = f"WHERE {where_str}"
  424. # 构建查询
  425. with connect_graph().session() as session:
  426. # 计算总数量
  427. count_query = f"""
  428. MATCH (n:data_model)
  429. OPTIONAL MATCH (n)-[:label]->(t)
  430. {where_str}
  431. RETURN COUNT(DISTINCT n) AS count
  432. """
  433. count_result = session.run(count_query, **params)
  434. count_record = count_result.single()
  435. total = count_record['count'] if count_record else 0
  436. # 查询数据
  437. query = f"""
  438. MATCH (n:data_model)
  439. OPTIONAL MATCH (n)-[:label]->(t)
  440. {where_str}
  441. RETURN DISTINCT
  442. id(n) as id,
  443. n.name as name,
  444. n.en_name as en_name,
  445. n.time as time,
  446. n.description as description,
  447. n.level as level,
  448. id(t) as tag_id,
  449. t.name as tag_name
  450. ORDER BY n.time DESC
  451. SKIP $skip
  452. LIMIT $limit
  453. """
  454. result = session.run(query, skip=skip_count, limit=page_size, **params)
  455. # 处理结果
  456. data = []
  457. for record in result:
  458. item = {
  459. "id": record['id'],
  460. "name": record['name'],
  461. "en_name": record['en_name'],
  462. "time": record['time'],
  463. "description": record['description'],
  464. "level": record['level'],
  465. "tag": {"id": record['tag_id'], "name": record['tag_name']} if record['tag_id'] is not None else None
  466. }
  467. data.append(item)
  468. return data, total
  469. except Exception as e:
  470. print(f"Error in model_list: {str(e)}")
  471. import traceback
  472. traceback.print_exc()
  473. return [], 0
  474. # 有血缘关系的数据资源列表
  475. def model_resource_list(skip_count, page_size, name_filter=None, id=None,
  476. category=None, time=None):
  477. """
  478. 获取数据模型相关的数据资源列表
  479. Args:
  480. skip_count: 跳过的数量
  481. page_size: 页面大小
  482. name_filter: 名称过滤条件
  483. id: 数据模型ID
  484. category: 类别过滤条件
  485. time: 时间过滤条件
  486. Returns:
  487. tuple: (数据资源列表, 总数量)
  488. """
  489. try:
  490. # 构建基础查询
  491. base_query = """
  492. MATCH (n:data_model)
  493. WHERE id(n) = $nodeId
  494. MATCH (n)-[:children]->(m:data_resource)
  495. """
  496. # 计算总数量
  497. count_query = base_query + """
  498. RETURN COUNT(m) as count
  499. """
  500. with connect_graph().session() as session:
  501. # 执行计数查询
  502. count_result = session.run(count_query, nodeId=id)
  503. count_record = count_result.single()
  504. total = count_record['count'] if count_record else 0
  505. # 使用分页和筛选条件构建主查询
  506. main_query = base_query + """
  507. MATCH (m)-[:label]->(l)
  508. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  509. RETURN m.name as name,
  510. m.en_name as en_name,
  511. id(m) as id,
  512. l.name as label,
  513. m.time as time,
  514. m.description as description,
  515. m.category as category
  516. ORDER BY m.time DESC
  517. SKIP $skip LIMIT $limit
  518. """
  519. # 执行主查询
  520. result = session.run(main_query, nodeId=id, skip=skip_count, limit=page_size)
  521. # 处理结果
  522. data = []
  523. for record in result:
  524. item = {
  525. "name": record['name'],
  526. "en_name": record['en_name'],
  527. "id": record['id'],
  528. "label": record['label'],
  529. "time": record['time'],
  530. "description": record['description'],
  531. "category": record['category']
  532. }
  533. data.append(item)
  534. return data, total
  535. except Exception as e:
  536. print(f"Error in model_resource_list: {str(e)}")
  537. import traceback
  538. traceback.print_exc()
  539. return [], 0
  540. # 数据模型血缘图谱
  541. def model_kinship_graph(nodeid, meta=False):
  542. """
  543. 生成数据模型的血缘关系图谱
  544. Args:
  545. nodeid: 节点ID
  546. meta: 是否包含元数据
  547. Returns:
  548. dict: 包含节点和连线信息的图谱数据
  549. """
  550. result = {}
  551. with connect_graph().session() as session:
  552. # 查询起始模型节点
  553. start_node_query = """
  554. MATCH (n:data_model)
  555. WHERE id(n) = $nodeId
  556. RETURN n.name as name, n.en_name as en_name
  557. """
  558. start_result = session.run(start_node_query, nodeId=nodeid)
  559. start_record = start_result.single()
  560. if not start_record:
  561. return {"nodes": [], "lines": []}
  562. # 查询与模型关联的数据资源
  563. resource_query = """
  564. MATCH (n:data_model)
  565. WHERE id(n) = $nodeId
  566. MATCH p = (n)-[:children]->(resource:data_resource)
  567. RETURN resource
  568. """
  569. resource_result = session.run(resource_query, nodeId=nodeid)
  570. nodes = [{"id": str(nodeid), "text": start_record['name'], "type": "model"}]
  571. lines = []
  572. # 处理资源节点
  573. for record in resource_result:
  574. if 'resource' in record:
  575. resource = record['resource']
  576. resource_id = str(resource.id)
  577. resource_name = resource.get('name', '')
  578. resource_en_name = resource.get('en_name', '')
  579. # 创建资源节点
  580. resource_node = {
  581. "id": resource_id,
  582. "text": resource_name,
  583. "type": "resource"
  584. }
  585. nodes.append(resource_node)
  586. # 创建资源到模型的关系
  587. line = {
  588. "from": str(nodeid),
  589. "to": resource_id,
  590. "text": "resource"
  591. }
  592. lines.append(line)
  593. # 处理元数据节点
  594. if meta:
  595. meta_query = """
  596. MATCH (n:data_model)
  597. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  598. MATCH p = (n)-[:meta]->(meta:meta_node)
  599. RETURN meta
  600. """
  601. meta_result = session.run(meta_query, nodeId=nodeid)
  602. for record in meta_result:
  603. if 'meta' in record:
  604. meta_node = record['meta']
  605. meta_id = str(meta.id)
  606. meta_name = meta.get('name', '')
  607. meta_en_name = meta.get('en_name', '')
  608. # 创建元数据节点
  609. meta_node = {
  610. "id": meta_id,
  611. "text": meta_name,
  612. "type": "meta"
  613. }
  614. nodes.append(meta_node)
  615. # 创建模型到元数据的标签关系
  616. tag_line = {
  617. "from": str(nodeid),
  618. "to": meta_id,
  619. "text": "component"
  620. }
  621. lines.append(tag_line)
  622. # 构建结果
  623. result = {
  624. "nodes": nodes,
  625. "lines": lines
  626. }
  627. return result
  628. # 数据模型影响图谱
  629. def model_impact_graph(nodeid, meta=False):
  630. """
  631. 生成数据模型的影响关系图谱
  632. Args:
  633. nodeid: 节点ID
  634. meta: 是否包含元数据
  635. Returns:
  636. dict: 包含节点和连线信息的图谱数据
  637. """
  638. result = {}
  639. with connect_graph().session() as session:
  640. # 查询起始模型节点
  641. start_node_query = """
  642. MATCH (n:data_model)
  643. WHERE id(n) = $nodeId
  644. RETURN n.name as name, n.en_name as en_name
  645. """
  646. start_result = session.run(start_node_query, nodeId=nodeid)
  647. start_record = start_result.single()
  648. if not start_record:
  649. return {"nodes": [], "lines": []}
  650. # 查询影响模型的数据资源
  651. resource_query = """
  652. MATCH (n:data_model)
  653. WHERE id(n) = $nodeId
  654. MATCH p = (n)-[:children]->(resource:data_resource)
  655. RETURN resource
  656. """
  657. resource_result = session.run(resource_query, nodeId=nodeid)
  658. nodes = [{"id": str(nodeid), "text": start_record['name'], "type": "model"}]
  659. lines = []
  660. # 处理资源节点
  661. for record in resource_result:
  662. if 'resource' in record:
  663. resource = record['resource']
  664. resource_id = str(resource.id)
  665. resource_name = resource.get('name', '')
  666. resource_en_name = resource.get('en_name', '')
  667. # 创建资源节点
  668. resource_node = {
  669. "id": resource_id,
  670. "text": resource_name,
  671. "type": "resource"
  672. }
  673. nodes.append(resource_node)
  674. # 创建资源到模型的关系
  675. line = {
  676. "from": str(nodeid),
  677. "to": resource_id,
  678. "text": "resource"
  679. }
  680. lines.append(line)
  681. # 处理元数据节点
  682. if meta:
  683. meta_query = """
  684. MATCH (n:data_model)
  685. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  686. MATCH p = (n)-[:meta]->(meta:meta_node)
  687. RETURN meta
  688. """
  689. meta_result = session.run(meta_query, nodeId=nodeid)
  690. for record in meta_result:
  691. if 'meta' in record:
  692. meta_node = record['meta']
  693. meta_id = str(meta.id)
  694. meta_name = meta.get('name', '')
  695. meta_en_name = meta.get('en_name', '')
  696. # 创建元数据节点
  697. meta_node = {
  698. "id": meta_id,
  699. "text": meta_name,
  700. "type": "meta"
  701. }
  702. nodes.append(meta_node)
  703. # 创建模型到元数据的标签关系
  704. tag_line = {
  705. "from": str(nodeid),
  706. "to": meta_id,
  707. "text": "component"
  708. }
  709. lines.append(tag_line)
  710. # 构建结果
  711. result = {
  712. "nodes": nodes,
  713. "lines": lines
  714. }
  715. return result
  716. # 数据模型全部图谱
  717. def model_all_graph(nodeid, meta=False):
  718. """
  719. 生成数据模型的所有关系图谱
  720. Args:
  721. nodeid: 节点ID
  722. meta: 是否包含元数据
  723. Returns:
  724. dict: 包含节点和连线信息的图谱数据
  725. """
  726. result = {}
  727. with connect_graph().session() as session:
  728. # 查询起始模型节点
  729. start_node_query = """
  730. MATCH (n:data_model)
  731. WHERE id(n) = $nodeId
  732. RETURN n.name as name, n.en_name as en_name
  733. """
  734. start_result = session.run(start_node_query, nodeId=nodeid)
  735. start_record = start_result.single()
  736. if not start_record:
  737. return {"nodes": [], "lines": []}
  738. # 查询与模型关联的数据资源
  739. resource_query = """
  740. MATCH (n:data_model)
  741. WHERE id(n) = $nodeId
  742. MATCH p = (n)-[:children]->(resource:data_resource)
  743. RETURN resource
  744. """
  745. resource_result = session.run(resource_query, nodeId=nodeid)
  746. # 查询与模型关联的元数据
  747. meta_query = """
  748. MATCH (n:data_model)
  749. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  750. MATCH p = (n)-[:meta]->(meta:meta_node)
  751. RETURN meta
  752. """
  753. nodes = [{"id": str(nodeid), "text": start_record['name'], "type": "model"}]
  754. lines = []
  755. # 处理资源节点
  756. for record in resource_result:
  757. if 'resource' in record:
  758. resource = record['resource']
  759. resource_id = str(resource.id)
  760. resource_name = resource.get('name', '')
  761. resource_en_name = resource.get('en_name', '')
  762. # 创建资源节点
  763. resource_node = {
  764. "id": resource_id,
  765. "text": resource_name,
  766. "type": "resource"
  767. }
  768. nodes.append(resource_node)
  769. # 创建资源到模型的关系
  770. line = {
  771. "from": str(nodeid),
  772. "to": resource_id,
  773. "text": "resource"
  774. }
  775. lines.append(line)
  776. # 处理元数据节点
  777. if meta:
  778. meta_result = session.run(meta_query, nodeId=nodeid)
  779. for record in meta_result:
  780. if 'meta' in record:
  781. meta_node = record['meta']
  782. meta_id = str(meta.id)
  783. meta_name = meta.get('name', '')
  784. meta_en_name = meta.get('en_name', '')
  785. # 创建元数据节点
  786. meta_node = {
  787. "id": meta_id,
  788. "text": meta_name,
  789. "type": "meta"
  790. }
  791. nodes.append(meta_node)
  792. # 创建模型到元数据的标签关系
  793. tag_line = {
  794. "from": str(nodeid),
  795. "to": meta_id,
  796. "text": "component"
  797. }
  798. lines.append(tag_line)
  799. # 构建结果
  800. result = {
  801. "nodes": nodes,
  802. "lines": lines
  803. }
  804. return result
  805. # 更新数据模型
  806. def data_model_edit(receiver):
  807. """
  808. 更新数据模型
  809. Args:
  810. receiver: 接收到的请求参数
  811. Returns:
  812. 更新结果
  813. """
  814. id = receiver.get('id')
  815. name = receiver.get('name')
  816. en_name = receiver.get('en_name')
  817. category = receiver.get('category')
  818. description = receiver.get('description')
  819. tag = receiver.get('tag')
  820. # 更新数据模型节点
  821. query = """
  822. MATCH (n:data_model) WHERE id(n) = $id
  823. SET n.name = $name, n.en_name = $en_name, n.category = $category, n.description = $description
  824. RETURN n
  825. """
  826. with connect_graph().session() as session:
  827. result = session.run(query, id=id, name=name, en_name=en_name,
  828. category=category, description=description).data()
  829. # 处理标签关系
  830. if tag:
  831. # 先删除所有标签关系
  832. delete_query = """
  833. MATCH (n:data_model)-[r:label]->() WHERE id(n) = $id
  834. DELETE r
  835. """
  836. with connect_graph().session() as session:
  837. session.run(delete_query, id=id)
  838. # 再创建新的标签关系
  839. tag_node = get_node_by_id('data_label', tag)
  840. if tag_node:
  841. model_node = get_node_by_id_no_label(id)
  842. if model_node and not relationship_exists(model_node, 'label', tag_node):
  843. with connect_graph().session() as session:
  844. session.execute_write(
  845. lambda tx: tx.run(
  846. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:label]->(b)",
  847. a_id=model_node.id, b_id=tag_node.id
  848. )
  849. )
  850. return {"message": "数据模型更新成功"}