dataflows.py 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. import logging
  2. from typing import Dict, List, Optional, Any, Union
  3. from datetime import datetime
  4. import json
  5. from app.core.llm.llm_service import llm_client, llm_sql
  6. from app.core.graph.graph_operations import connect_graph, create_or_get_node, get_node, relationship_exists
  7. from app.core.meta_data import translate_and_parse, get_formatted_time
  8. from py2neo import Relationship
  9. from app import db
  10. from sqlalchemy import text
  11. logger = logging.getLogger(__name__)
  12. class DataFlowService:
  13. """数据流服务类,处理数据流相关的业务逻辑"""
  14. @staticmethod
  15. def get_dataflows(page: int = 1, page_size: int = 10, search: str = '') -> Dict[str, Any]:
  16. """
  17. 获取数据流列表
  18. Args:
  19. page: 页码
  20. page_size: 每页大小
  21. search: 搜索关键词
  22. Returns:
  23. 包含数据流列表和分页信息的字典
  24. """
  25. try:
  26. # 从图数据库查询数据流列表
  27. skip_count = (page - 1) * page_size
  28. # 构建搜索条件
  29. where_clause = ""
  30. params = {'skip': skip_count, 'limit': page_size}
  31. if search:
  32. where_clause = "WHERE n.name_zh CONTAINS $search OR n.description CONTAINS $search"
  33. params['search'] = search
  34. # 查询数据流列表
  35. query = f"""
  36. MATCH (n:DataFlow)
  37. {where_clause}
  38. RETURN n, id(n) as node_id
  39. ORDER BY n.created_at DESC
  40. SKIP $skip
  41. LIMIT $limit
  42. """
  43. # 获取Neo4j驱动(如果连接失败会抛出ConnectionError异常)
  44. driver = connect_graph()
  45. with driver.session() as session:
  46. list_result = session.run(query, **params).data()
  47. # 查询总数
  48. count_query = f"""
  49. MATCH (n:DataFlow)
  50. {where_clause}
  51. RETURN count(n) as total
  52. """
  53. count_params = {'search': search} if search else {}
  54. count_result = session.run(count_query, **count_params).single()
  55. total = count_result['total'] if count_result else 0
  56. # 格式化结果
  57. dataflows = []
  58. for record in list_result:
  59. node = record['n']
  60. dataflow = dict(node)
  61. dataflow['id'] = record['node_id'] # 使用查询返回的node_id
  62. dataflows.append(dataflow)
  63. return {
  64. 'list': dataflows,
  65. 'pagination': {
  66. 'page': page,
  67. 'page_size': page_size,
  68. 'total': total,
  69. 'total_pages': (total + page_size - 1) // page_size
  70. }
  71. }
  72. except Exception as e:
  73. logger.error(f"获取数据流列表失败: {str(e)}")
  74. raise e
  75. @staticmethod
  76. def get_dataflow_by_id(dataflow_id: int) -> Optional[Dict[str, Any]]:
  77. """
  78. 根据ID获取数据流详情
  79. Args:
  80. dataflow_id: 数据流ID
  81. Returns:
  82. 数据流详情字典,如果不存在则返回None
  83. """
  84. try:
  85. # 从Neo4j获取基本信息
  86. neo4j_query = """
  87. MATCH (n:DataFlow)
  88. WHERE id(n) = $dataflow_id
  89. OPTIONAL MATCH (n)-[:LABEL]-(la:DataLabel)
  90. RETURN n, id(n) as node_id,
  91. collect(DISTINCT {id: id(la), name: la.name}) as tags
  92. """
  93. with connect_graph().session() as session:
  94. neo4j_result = session.run(neo4j_query, dataflow_id=dataflow_id).data()
  95. if not neo4j_result:
  96. return None
  97. record = neo4j_result[0]
  98. node = record['n']
  99. dataflow = dict(node)
  100. dataflow['id'] = record['node_id']
  101. dataflow['tags'] = record['tags']
  102. # 从PostgreSQL获取额外信息
  103. pg_query = """
  104. SELECT
  105. source_table,
  106. target_table,
  107. script_name,
  108. script_type,
  109. script_requirement,
  110. script_content,
  111. user_name,
  112. create_time,
  113. update_time,
  114. target_dt_column
  115. FROM dags.data_transform_scripts
  116. WHERE script_name = :script_name
  117. """
  118. with db.engine.connect() as conn:
  119. pg_result = conn.execute(text(pg_query), {"script_name": dataflow.get('name_zh')}).fetchone()
  120. if pg_result:
  121. # 将PostgreSQL数据添加到结果中
  122. dataflow.update({
  123. 'source_table': pg_result.source_table,
  124. 'target_table': pg_result.target_table,
  125. 'script_type': pg_result.script_type,
  126. 'script_requirement': pg_result.script_requirement,
  127. 'script_content': pg_result.script_content,
  128. 'created_by': pg_result.user_name,
  129. 'pg_created_at': pg_result.create_time,
  130. 'pg_updated_at': pg_result.update_time,
  131. 'target_dt_column': pg_result.target_dt_column
  132. })
  133. return dataflow
  134. except Exception as e:
  135. logger.error(f"获取数据流详情失败: {str(e)}")
  136. raise e
  137. @staticmethod
  138. def create_dataflow(data: Dict[str, Any]) -> Dict[str, Any]:
  139. """
  140. 创建新的数据流
  141. Args:
  142. data: 数据流配置数据
  143. Returns:
  144. 创建的数据流信息
  145. """
  146. try:
  147. # 验证必填字段
  148. required_fields = ['name_zh', 'describe']
  149. for field in required_fields:
  150. if field not in data:
  151. raise ValueError(f"缺少必填字段: {field}")
  152. dataflow_name = data['name_zh']
  153. # 使用LLM翻译名称生成英文名
  154. try:
  155. result_list = translate_and_parse(dataflow_name)
  156. name_en = result_list[0] if result_list else dataflow_name.lower().replace(' ', '_')
  157. except Exception as e:
  158. logger.warning(f"翻译失败,使用默认英文名: {str(e)}")
  159. name_en = dataflow_name.lower().replace(' ', '_')
  160. # 准备节点数据
  161. node_data = {
  162. 'name_zh': dataflow_name,
  163. 'name_en': name_en,
  164. 'category': data.get('category', ''),
  165. 'organization': data.get('organization', ''),
  166. 'leader': data.get('leader', ''),
  167. 'frequency': data.get('frequency', ''),
  168. 'tag': data.get('tag', ''),
  169. 'describe': data.get('describe', ''),
  170. 'status': data.get('status', 'inactive'),
  171. 'update_mode': data.get('update_mode', 'append'),
  172. 'created_at': get_formatted_time(),
  173. 'updated_at': get_formatted_time()
  174. }
  175. # 创建或获取数据流节点
  176. dataflow_id = get_node('DataFlow', name=dataflow_name)
  177. if dataflow_id:
  178. raise ValueError(f"数据流 '{dataflow_name}' 已存在")
  179. dataflow_id = create_or_get_node('DataFlow', **node_data)
  180. # 处理标签关系
  181. tag_id = data.get('tag')
  182. if tag_id is not None:
  183. try:
  184. DataFlowService._handle_tag_relationship(dataflow_id, tag_id)
  185. except Exception as e:
  186. logger.warning(f"处理标签关系时出错: {str(e)}")
  187. # 成功创建图数据库节点后,写入PG数据库
  188. try:
  189. DataFlowService._save_to_pg_database(data, dataflow_name, name_en)
  190. logger.info(f"数据流信息已写入PG数据库: {dataflow_name}")
  191. # PG数据库记录成功写入后,在neo4j图数据库中创建script关系
  192. try:
  193. DataFlowService._handle_script_relationships(data,dataflow_name,name_en)
  194. logger.info(f"脚本关系创建成功: {dataflow_name}")
  195. except Exception as script_error:
  196. logger.warning(f"创建脚本关系失败: {str(script_error)}")
  197. except Exception as pg_error:
  198. logger.error(f"写入PG数据库失败: {str(pg_error)}")
  199. # 注意:这里可以选择回滚图数据库操作,但目前保持图数据库数据
  200. # 在实际应用中,可能需要考虑分布式事务
  201. # 返回创建的数据流信息
  202. # 查询创建的节点获取完整信息
  203. query = "MATCH (n:DataFlow {name_zh: $name_zh}) RETURN n, id(n) as node_id"
  204. with connect_graph().session() as session:
  205. id_result = session.run(query, name_zh=dataflow_name).single()
  206. if id_result:
  207. dataflow_node = id_result['n']
  208. node_id = id_result['node_id']
  209. # 将节点属性转换为字典
  210. result = dict(dataflow_node)
  211. result['id'] = node_id
  212. else:
  213. # 如果查询失败,返回基本信息
  214. result = {
  215. 'id': dataflow_id if isinstance(dataflow_id, int) else None,
  216. 'name_zh': dataflow_name,
  217. 'name_en': name_en,
  218. 'created_at': get_formatted_time()
  219. }
  220. logger.info(f"创建数据流成功: {dataflow_name}")
  221. return result
  222. except Exception as e:
  223. logger.error(f"创建数据流失败: {str(e)}")
  224. raise e
  225. @staticmethod
  226. def _save_to_pg_database(data: Dict[str, Any], script_name: str, name_en: str):
  227. """
  228. 将脚本信息保存到PG数据库
  229. Args:
  230. data: 包含脚本信息的数据
  231. script_name: 脚本名称
  232. name_en: 英文名称
  233. """
  234. try:
  235. # 提取脚本相关信息
  236. script_requirement = data.get('script_requirement', '')
  237. script_content = data.get('script_content', '')
  238. source_table = data.get('source_table', '').split(':')[-1] if ':' in data.get('source_table', '') else data.get('source_table', '')
  239. target_table = data.get('target_table', '').split(':')[-1] if ':' in data.get('target_table', '') else data.get('target_table', name_en) # 如果没有指定目标表,使用英文名
  240. script_type = data.get('script_type', 'python')
  241. user_name = data.get('created_by', 'system')
  242. target_dt_column = data.get('target_dt_column', '')
  243. # 验证必需字段
  244. if not target_table:
  245. target_table = name_en
  246. if not script_name:
  247. raise ValueError("script_name不能为空")
  248. # 构建插入SQL
  249. insert_sql = text("""
  250. INSERT INTO dags.data_transform_scripts
  251. (source_table, target_table, script_name, script_type, script_requirement,
  252. script_content, user_name, create_time, update_time, target_dt_column)
  253. VALUES
  254. (:source_table, :target_table, :script_name, :script_type, :script_requirement,
  255. :script_content, :user_name, :create_time, :update_time, :target_dt_column)
  256. ON CONFLICT (target_table, script_name)
  257. DO UPDATE SET
  258. source_table = EXCLUDED.source_table,
  259. script_type = EXCLUDED.script_type,
  260. script_requirement = EXCLUDED.script_requirement,
  261. script_content = EXCLUDED.script_content,
  262. user_name = EXCLUDED.user_name,
  263. update_time = EXCLUDED.update_time,
  264. target_dt_column = EXCLUDED.target_dt_column
  265. """)
  266. # 准备参数
  267. current_time = datetime.now()
  268. params = {
  269. 'source_table': source_table,
  270. 'target_table': target_table,
  271. 'script_name': script_name,
  272. 'script_type': script_type,
  273. 'script_requirement': script_requirement,
  274. 'script_content': script_content,
  275. 'user_name': user_name,
  276. 'create_time': current_time,
  277. 'update_time': current_time,
  278. 'target_dt_column': target_dt_column
  279. }
  280. # 执行插入操作
  281. db.session.execute(insert_sql, params)
  282. db.session.commit()
  283. logger.info(f"成功将脚本信息写入PG数据库: target_table={target_table}, script_name={script_name}")
  284. except Exception as e:
  285. db.session.rollback()
  286. logger.error(f"写入PG数据库失败: {str(e)}")
  287. raise e
  288. @staticmethod
  289. def _handle_children_relationships(dataflow_node, children_ids):
  290. """处理子节点关系"""
  291. logger.debug(f"处理子节点关系,原始children_ids: {children_ids}, 类型: {type(children_ids)}")
  292. # 确保children_ids是列表格式
  293. if not isinstance(children_ids, (list, tuple)):
  294. if children_ids is not None:
  295. children_ids = [children_ids] # 如果是单个值,转换为列表
  296. logger.debug(f"将单个值转换为列表: {children_ids}")
  297. else:
  298. children_ids = [] # 如果是None,转换为空列表
  299. logger.debug("将None转换为空列表")
  300. for child_id in children_ids:
  301. try:
  302. # 查找子节点
  303. query = "MATCH (n) WHERE id(n) = $child_id RETURN n"
  304. with connect_graph().session() as session:
  305. result = session.run(query, child_id=child_id).data()
  306. if result:
  307. child_node = result[0]['n']
  308. # 获取dataflow_node的ID
  309. dataflow_id = getattr(dataflow_node, 'identity', None)
  310. if dataflow_id is None:
  311. # 如果没有identity属性,从名称查询ID
  312. query_id = "MATCH (n:DataFlow) WHERE n.name_zh = $name_zh RETURN id(n) as node_id"
  313. id_result = session.run(query_id, name_zh=dataflow_node.get('name_zh')).single()
  314. dataflow_id = id_result['node_id'] if id_result else None
  315. # 创建关系 - 使用ID调用relationship_exists
  316. if dataflow_id and not relationship_exists(dataflow_id, 'child', child_id):
  317. session.run("MATCH (a), (b) WHERE id(a) = $dataflow_id AND id(b) = $child_id CREATE (a)-[:child]->(b)",
  318. dataflow_id=dataflow_id, child_id=child_id)
  319. logger.info(f"创建子节点关系: {dataflow_id} -> {child_id}")
  320. except Exception as e:
  321. logger.warning(f"创建子节点关系失败 {child_id}: {str(e)}")
  322. @staticmethod
  323. def _handle_tag_relationship(dataflow_id, tag_id):
  324. """处理标签关系"""
  325. try:
  326. # 查找标签节点
  327. query = "MATCH (n:DataLabel) WHERE id(n) = $tag_id RETURN n"
  328. with connect_graph().session() as session:
  329. result = session.run(query, tag_id=tag_id).data()
  330. if result:
  331. tag_node = result[0]['n']
  332. # 创建关系 - 使用ID调用relationship_exists
  333. if dataflow_id and not relationship_exists(dataflow_id, 'LABEL', tag_id):
  334. session.run("MATCH (a), (b) WHERE id(a) = $dataflow_id AND id(b) = $tag_id CREATE (a)-[:LABEL]->(b)",
  335. dataflow_id=dataflow_id, tag_id=tag_id)
  336. logger.info(f"创建标签关系: {dataflow_id} -> {tag_id}")
  337. except Exception as e:
  338. logger.warning(f"创建标签关系失败 {tag_id}: {str(e)}")
  339. @staticmethod
  340. def update_dataflow(dataflow_id: int, data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
  341. """
  342. 更新数据流
  343. Args:
  344. dataflow_id: 数据流ID
  345. data: 更新的数据
  346. Returns:
  347. 更新后的数据流信息,如果不存在则返回None
  348. """
  349. try:
  350. # 查找节点
  351. query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
  352. with connect_graph().session() as session:
  353. result = session.run(query, dataflow_id=dataflow_id).data()
  354. if not result:
  355. return None
  356. # 更新节点属性
  357. update_fields = []
  358. params = {'dataflow_id': dataflow_id}
  359. for key, value in data.items():
  360. if key not in ['id', 'created_at']: # 保护字段
  361. if key == 'config' and isinstance(value, dict):
  362. value = json.dumps(value, ensure_ascii=False)
  363. update_fields.append(f"n.{key} = ${key}")
  364. params[key] = value
  365. if update_fields:
  366. params['updated_at'] = get_formatted_time()
  367. update_fields.append("n.updated_at = $updated_at")
  368. update_query = f"""
  369. MATCH (n:DataFlow) WHERE id(n) = $dataflow_id
  370. SET {', '.join(update_fields)}
  371. RETURN n, id(n) as node_id
  372. """
  373. result = session.run(update_query, **params).data()
  374. if result:
  375. node = result[0]['n']
  376. updated_dataflow = dict(node)
  377. updated_dataflow['id'] = result[0]['node_id'] # 使用查询返回的node_id
  378. logger.info(f"更新数据流成功: ID={dataflow_id}")
  379. return updated_dataflow
  380. return None
  381. except Exception as e:
  382. logger.error(f"更新数据流失败: {str(e)}")
  383. raise e
  384. @staticmethod
  385. def delete_dataflow(dataflow_id: int) -> bool:
  386. """
  387. 删除数据流
  388. Args:
  389. dataflow_id: 数据流ID
  390. Returns:
  391. 删除是否成功
  392. """
  393. try:
  394. # 删除节点及其关系
  395. query = """
  396. MATCH (n:DataFlow) WHERE id(n) = $dataflow_id
  397. DETACH DELETE n
  398. RETURN count(n) as deleted_count
  399. """
  400. with connect_graph().session() as session:
  401. delete_result = session.run(query, dataflow_id=dataflow_id).single()
  402. result = delete_result['deleted_count'] if delete_result else 0
  403. if result and result > 0:
  404. logger.info(f"删除数据流成功: ID={dataflow_id}")
  405. return True
  406. return False
  407. except Exception as e:
  408. logger.error(f"删除数据流失败: {str(e)}")
  409. raise e
  410. @staticmethod
  411. def execute_dataflow(dataflow_id: int, params: Dict[str, Any] = None) -> Dict[str, Any]:
  412. """
  413. 执行数据流
  414. Args:
  415. dataflow_id: 数据流ID
  416. params: 执行参数
  417. Returns:
  418. 执行结果信息
  419. """
  420. try:
  421. # 检查数据流是否存在
  422. query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
  423. with connect_graph().session() as session:
  424. result = session.run(query, dataflow_id=dataflow_id).data()
  425. if not result:
  426. raise ValueError(f"数据流不存在: ID={dataflow_id}")
  427. execution_id = f"exec_{dataflow_id}_{int(datetime.now().timestamp())}"
  428. # TODO: 这里应该实际执行数据流
  429. # 目前返回模拟结果
  430. result = {
  431. 'execution_id': execution_id,
  432. 'dataflow_id': dataflow_id,
  433. 'status': 'running',
  434. 'started_at': datetime.now().isoformat(),
  435. 'params': params or {},
  436. 'progress': 0
  437. }
  438. logger.info(f"开始执行数据流: ID={dataflow_id}, execution_id={execution_id}")
  439. return result
  440. except Exception as e:
  441. logger.error(f"执行数据流失败: {str(e)}")
  442. raise e
  443. @staticmethod
  444. def get_dataflow_status(dataflow_id: int) -> Dict[str, Any]:
  445. """
  446. 获取数据流执行状态
  447. Args:
  448. dataflow_id: 数据流ID
  449. Returns:
  450. 执行状态信息
  451. """
  452. try:
  453. # TODO: 这里应该查询实际的执行状态
  454. # 目前返回模拟状态
  455. query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
  456. with connect_graph().session() as session:
  457. result = session.run(query, dataflow_id=dataflow_id).data()
  458. if not result:
  459. raise ValueError(f"数据流不存在: ID={dataflow_id}")
  460. status = ['running', 'completed', 'failed', 'pending'][dataflow_id % 4]
  461. return {
  462. 'dataflow_id': dataflow_id,
  463. 'status': status,
  464. 'progress': 100 if status == 'completed' else (dataflow_id * 10) % 100,
  465. 'started_at': datetime.now().isoformat(),
  466. 'completed_at': datetime.now().isoformat() if status == 'completed' else None,
  467. 'error_message': '执行过程中发生错误' if status == 'failed' else None
  468. }
  469. except Exception as e:
  470. logger.error(f"获取数据流状态失败: {str(e)}")
  471. raise e
  472. @staticmethod
  473. def get_dataflow_logs(dataflow_id: int, page: int = 1, page_size: int = 50) -> Dict[str, Any]:
  474. """
  475. 获取数据流执行日志
  476. Args:
  477. dataflow_id: 数据流ID
  478. page: 页码
  479. page_size: 每页大小
  480. Returns:
  481. 执行日志列表和分页信息
  482. """
  483. try:
  484. # TODO: 这里应该查询实际的执行日志
  485. # 目前返回模拟日志
  486. query = "MATCH (n:DataFlow) WHERE id(n) = $dataflow_id RETURN n"
  487. with connect_graph().session() as session:
  488. result = session.run(query, dataflow_id=dataflow_id).data()
  489. if not result:
  490. raise ValueError(f"数据流不存在: ID={dataflow_id}")
  491. mock_logs = [
  492. {
  493. 'id': i,
  494. 'timestamp': datetime.now().isoformat(),
  495. 'level': ['INFO', 'WARNING', 'ERROR'][i % 3],
  496. 'message': f'数据流执行日志消息 {i}',
  497. 'component': ['source', 'transform', 'target'][i % 3]
  498. }
  499. for i in range(1, 101)
  500. ]
  501. # 分页处理
  502. total = len(mock_logs)
  503. start = (page - 1) * page_size
  504. end = start + page_size
  505. logs = mock_logs[start:end]
  506. return {
  507. 'logs': logs,
  508. 'pagination': {
  509. 'page': page,
  510. 'page_size': page_size,
  511. 'total': total,
  512. 'total_pages': (total + page_size - 1) // page_size
  513. }
  514. }
  515. except Exception as e:
  516. logger.error(f"获取数据流日志失败: {str(e)}")
  517. raise e
  518. @staticmethod
  519. def create_script(request_data: Union[Dict[str, Any], str]) -> str:
  520. """
  521. 使用Deepseek模型生成SQL脚本
  522. Args:
  523. request_data: 包含input, output, request_content的请求数据字典,或JSON字符串
  524. Returns:
  525. 生成的SQL脚本内容
  526. """
  527. try:
  528. logger.info(f"开始处理脚本生成请求: {request_data}")
  529. logger.info(f"request_data类型: {type(request_data)}")
  530. # 类型检查和处理
  531. if isinstance(request_data, str):
  532. logger.warning(f"request_data是字符串,尝试解析为JSON: {request_data}")
  533. try:
  534. import json
  535. request_data = json.loads(request_data)
  536. except json.JSONDecodeError as e:
  537. raise ValueError(f"无法解析request_data为JSON: {str(e)}")
  538. if not isinstance(request_data, dict):
  539. raise ValueError(f"request_data必须是字典类型,实际类型: {type(request_data)}")
  540. # 1. 从传入的request_data中解析input, output, request_content内容
  541. input_data = request_data.get('input', '')
  542. output_data = request_data.get('output', '')
  543. request_content = request_data.get('request_data', '')
  544. # 如果request_content是HTML格式,提取纯文本
  545. if request_content and (request_content.startswith('<p>') or '<' in request_content):
  546. # 简单的HTML标签清理
  547. import re
  548. request_content = re.sub(r'<[^>]+>', '', request_content).strip()
  549. if not input_data or not output_data or not request_content:
  550. raise ValueError(f"缺少必要参数:input='{input_data}', output='{output_data}', request_content='{request_content[:100] if request_content else ''}' 不能为空")
  551. logger.info(f"解析得到 - input: {input_data}, output: {output_data}, request_content: {request_content}")
  552. # 2. 解析input中的多个数据表并生成源表DDL
  553. source_tables_ddl = []
  554. input_tables = []
  555. if input_data:
  556. tables = [table.strip() for table in input_data.split(',') if table.strip()]
  557. for table in tables:
  558. ddl = DataFlowService._parse_table_and_get_ddl(table, 'input')
  559. if ddl:
  560. input_tables.append(table)
  561. source_tables_ddl.append(ddl)
  562. else:
  563. logger.warning(f"无法获取输入表 {table} 的DDL结构")
  564. # 3. 解析output中的数据表并生成目标表DDL
  565. target_table_ddl = ""
  566. if output_data:
  567. target_table_ddl = DataFlowService._parse_table_and_get_ddl(output_data.strip(), 'output')
  568. if not target_table_ddl:
  569. logger.warning(f"无法获取输出表 {output_data} 的DDL结构")
  570. # 4. 按照Deepseek-prompt.txt的框架构建提示语
  571. prompt_parts = []
  572. # 开场白 - 角色定义
  573. prompt_parts.append("你是一名数据库工程师,正在构建一个PostgreSQL数据中的汇总逻辑。请为以下需求生成一段标准的 PostgreSQL SQL 脚本:")
  574. # 动态生成源表部分(第1点)
  575. for i, (table, ddl) in enumerate(zip(input_tables, source_tables_ddl), 1):
  576. table_name = table.split(':')[-1] if ':' in table else table
  577. prompt_parts.append(f"{i}.有一个源表: {table_name},它的定义语句如下:")
  578. prompt_parts.append(ddl)
  579. prompt_parts.append("") # 添加空行分隔
  580. # 动态生成目标表部分(第2点)
  581. if target_table_ddl:
  582. target_table_name = output_data.split(':')[-1] if ':' in output_data else output_data
  583. next_index = len(input_tables) + 1
  584. prompt_parts.append(f"{next_index}.有一个目标表:{target_table_name},它的定义语句如下:")
  585. prompt_parts.append(target_table_ddl)
  586. prompt_parts.append("") # 添加空行分隔
  587. # 动态生成处理逻辑部分(第3点)
  588. next_index = len(input_tables) + 2 if target_table_ddl else len(input_tables) + 1
  589. prompt_parts.append(f"{next_index}.处理逻辑为:{request_content}")
  590. prompt_parts.append("") # 添加空行分隔
  591. # 固定的技术要求部分(第4-8点)
  592. tech_requirements = [
  593. f"{next_index + 1}.脚本应使用标准的 PostgreSQL 语法,适合在 Airflow、Python 脚本、或调度系统中调用;",
  594. f"{next_index + 2}.无需使用 UPSERT 或 ON CONFLICT",
  595. f"{next_index + 3}.请直接输出SQL,无需进行解释。",
  596. f"{next_index + 4}.请给这段sql起个英文名,不少于三个英文单词,使用\"_\"分隔,采用蛇形命名法。把sql的名字作为注释写在返回的sql中。",
  597. f"{next_index + 5}.生成的sql在向目标表插入数据的时候,向create_time字段写入当前日期时间now(),不用处理update_time字段"
  598. ]
  599. prompt_parts.extend(tech_requirements)
  600. # 组合完整的提示语
  601. full_prompt = "\n".join(prompt_parts)
  602. logger.info(f"构建的完整提示语长度: {len(full_prompt)}")
  603. logger.info(f"完整提示语内容: {full_prompt}")
  604. # 5. 调用LLM生成SQL脚本
  605. logger.info("开始调用Deepseek模型生成SQL脚本")
  606. script_content = llm_sql(full_prompt)
  607. if not script_content:
  608. raise ValueError("Deepseek模型返回空内容")
  609. # 确保返回的是文本格式
  610. if not isinstance(script_content, str):
  611. script_content = str(script_content)
  612. logger.info(f"SQL脚本生成成功,内容长度: {len(script_content)}")
  613. return script_content
  614. except Exception as e:
  615. logger.error(f"生成SQL脚本失败: {str(e)}")
  616. raise e
  617. @staticmethod
  618. def _parse_table_and_get_ddl(table_str: str, table_type: str) -> str:
  619. """
  620. 解析表格式(A:B)并从Neo4j查询元数据生成DDL
  621. Args:
  622. table_str: 表格式字符串,格式为"label:name_en"
  623. table_type: 表类型,用于日志记录(input/output)
  624. Returns:
  625. DDL格式的表结构字符串
  626. """
  627. try:
  628. # 解析A:B格式
  629. if ':' not in table_str:
  630. logger.error(f"表格式错误,应为'label:name_en'格式: {table_str}")
  631. return ""
  632. parts = table_str.split(':', 1)
  633. if len(parts) != 2:
  634. logger.error(f"表格式解析失败: {table_str}")
  635. return ""
  636. label = parts[0].strip()
  637. name_en = parts[1].strip()
  638. if not label or not name_en:
  639. logger.error(f"标签或英文名为空: label={label}, name_en={name_en}")
  640. return ""
  641. logger.info(f"开始查询{table_type}表: label={label}, name_en={name_en}")
  642. # 从Neo4j查询节点及其关联的元数据
  643. with connect_graph().session() as session:
  644. # 查询节点及其关联的元数据
  645. cypher = f"""
  646. MATCH (n:{label} {{name_en: $name_en}})
  647. OPTIONAL MATCH (n)-[:INCLUDES]->(m:DataMeta)
  648. RETURN n, collect(m) as metadata
  649. """
  650. result = session.run(cypher, name_en=name_en)
  651. record = result.single()
  652. if not record:
  653. logger.error(f"未找到节点: label={label}, name_en={name_en}")
  654. return ""
  655. node = record['n']
  656. metadata = record['metadata']
  657. logger.info(f"找到节点,关联元数据数量: {len(metadata)}")
  658. # 生成DDL格式的表结构
  659. ddl_lines = []
  660. ddl_lines.append(f"CREATE TABLE {name_en} (")
  661. if metadata:
  662. column_definitions = []
  663. for meta in metadata:
  664. if meta: # 确保meta不为空
  665. meta_props = dict(meta)
  666. column_name = meta_props.get('name_en', meta_props.get('name_zh', 'unknown_column'))
  667. data_type = meta_props.get('data_type', 'VARCHAR(255)')
  668. comment = meta_props.get('name_zh', '')
  669. # 构建列定义
  670. column_def = f" {column_name} {data_type}"
  671. if comment:
  672. column_def += f" COMMENT '{comment}'"
  673. column_definitions.append(column_def)
  674. if column_definitions:
  675. ddl_lines.append(",\n".join(column_definitions))
  676. else:
  677. ddl_lines.append(" id BIGINT PRIMARY KEY COMMENT '主键ID'")
  678. else:
  679. # 如果没有元数据,添加默认列
  680. ddl_lines.append(" id BIGINT PRIMARY KEY COMMENT '主键ID'")
  681. ddl_lines.append(");")
  682. # 添加表注释
  683. node_props = dict(node)
  684. table_comment = node_props.get('name_zh', node_props.get('describe', name_en))
  685. if table_comment and table_comment != name_en:
  686. ddl_lines.append(f"COMMENT ON TABLE {name_en} IS '{table_comment}';")
  687. ddl_content = "\n".join(ddl_lines)
  688. logger.info(f"{table_type}表DDL生成成功: {name_en}")
  689. logger.debug(f"生成的DDL: {ddl_content}")
  690. return ddl_content
  691. except Exception as e:
  692. logger.error(f"解析表格式和生成DDL失败: {str(e)}")
  693. return ""
  694. @staticmethod
  695. def _handle_script_relationships(data: Dict[str, Any],dataflow_name:str,name_en:str):
  696. """
  697. 处理脚本关系,在Neo4j图数据库中创建从source_table到target_table之间的DERIVED_FROM关系
  698. Args:
  699. data: 包含脚本信息的数据字典,应包含script_name, script_type, schedule_status, source_table, target_table, update_mode
  700. """
  701. try:
  702. # 从data中读取键值对
  703. script_name = dataflow_name,
  704. script_type = data.get('script_type', 'sql')
  705. schedule_status = data.get('status', 'inactive')
  706. source_table_full = data.get('source_table', '')
  707. target_table_full = data.get('target_table', '')
  708. update_mode = data.get('update_mode', 'full')
  709. # 处理source_table和target_table的格式
  710. source_table = source_table_full.split(':')[-1] if ':' in source_table_full else source_table_full
  711. target_table = target_table_full.split(':')[-1] if ':' in target_table_full else target_table_full
  712. source_label = source_table_full.split(':')[0] if ':' in source_table_full else source_table_full
  713. target_label = target_table_full.split(':')[0] if ':' in target_table_full else target_table_full
  714. # 验证必要字段
  715. if not source_table or not target_table:
  716. logger.warning(f"source_table或target_table为空,跳过关系创建: source_table={source_table}, target_table={target_table}")
  717. return
  718. logger.info(f"开始创建脚本关系: {source_table} -> {target_table}")
  719. with connect_graph().session() as session:
  720. # 创建或获取source和target节点
  721. create_nodes_query = f"""
  722. MERGE (source:{source_label} {{name: $source_table}})
  723. ON CREATE SET source.created_at = $created_at,
  724. source.type = 'source'
  725. WITH source
  726. MERGE (target:{target_label} {{name: $target_table}})
  727. ON CREATE SET target.created_at = $created_at,
  728. target.type = 'target'
  729. RETURN source, target, id(source) as source_id, id(target) as target_id
  730. """
  731. # 执行创建节点的查询
  732. result = session.run(create_nodes_query,
  733. source_table=source_table,
  734. target_table=target_table,
  735. created_at=get_formatted_time()).single()
  736. if result:
  737. source_id = result['source_id']
  738. target_id = result['target_id']
  739. # 检查并创建关系
  740. create_relationship_query = f"""
  741. MATCH (source:{source_label}), (target:{target_label})
  742. WHERE id(source) = $source_id AND id(target) = $target_id
  743. AND NOT EXISTS((target)-[:DERIVED_FROM]->(source))
  744. CREATE (target)-[r:DERIVED_FROM]->(source)
  745. SET r.script_name = $script_name,
  746. r.script_type = $script_type,
  747. r.schedule_status = $schedule_status,
  748. r.update_mode = $update_mode,
  749. r.created_at = $created_at,
  750. r.updated_at = $created_at
  751. RETURN r
  752. """
  753. relationship_result = session.run(create_relationship_query,
  754. source_id=source_id,
  755. target_id=target_id,
  756. script_name=script_name,
  757. script_type=script_type,
  758. schedule_status=schedule_status,
  759. update_mode=update_mode,
  760. created_at=get_formatted_time()).single()
  761. if relationship_result:
  762. logger.info(f"成功创建DERIVED_FROM关系: {target_table} -> {source_table} (script: {script_name})")
  763. else:
  764. logger.info(f"DERIVED_FROM关系已存在: {target_table} -> {source_table}")
  765. else:
  766. logger.error(f"创建表节点失败: source_table={source_table}, target_table={target_table}")
  767. except Exception as e:
  768. logger.error(f"处理脚本关系失败: {str(e)}")
  769. raise e