model.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. """
  2. 数据模型核心业务逻辑模块
  3. 本模块包含了数据模型相关的所有核心业务逻辑函数,包括:
  4. - 数据模型的创建、更新、删除
  5. - 数据模型与数据资源、元数据之间的关系处理
  6. - 数据模型血缘关系管理
  7. - 数据模型图谱生成
  8. - 数据模型层级计算等功能
  9. """
  10. import math
  11. import threading
  12. from concurrent.futures import ThreadPoolExecutor
  13. import pandas as pd
  14. from py2neo import Relationship
  15. import logging
  16. import json
  17. # Configure logger
  18. logger = logging.getLogger(__name__)
  19. from app.core.graph.graph_operations import relationship_exists
  20. from app.core.graph.graph_operations import connect_graph,create_or_get_node,get_node
  21. from app.services.neo4j_driver import neo4j_driver
  22. from app.core.meta_data import get_formatted_time, handle_id_unstructured
  23. from app.core.common import delete_relationships, update_or_create_node, get_node_by_id_no_label
  24. from app.core.data_resource.resource import get_node_by_id
  25. # 根据child关系计算数据模型当前的level自动保存
  26. def calculate_model_level(id):
  27. """
  28. 根据child关系计算数据模型当前的level并自动保存
  29. Args:
  30. id: 数据模型的节点ID(整数)
  31. Returns:
  32. None
  33. """
  34. # 确保id是整数类型
  35. node_id = int(id) if id is not None else None
  36. cql = """
  37. MATCH (start_node:data_model)
  38. WHERE id(start_node) = $nodeId
  39. CALL {
  40. WITH start_node
  41. OPTIONAL MATCH path = (start_node)-[:child*]->(end_node)
  42. RETURN length(path) AS level
  43. }
  44. WITH coalesce(max(level), 0) AS max_level
  45. RETURN max_level
  46. """
  47. with connect_graph().session() as session:
  48. result = session.run(cql, nodeId=node_id)
  49. record = result.single()
  50. data = record["max_level"] if record and "max_level" in record else 0
  51. # 更新level属性
  52. update_query = """
  53. MATCH (n:data_model)
  54. WHERE id(n) = $nodeId
  55. SET n.level = $level
  56. RETURN n
  57. """
  58. with connect_graph().session() as session:
  59. session.run(update_query, nodeId=node_id, level=data)
  60. # 处理数据模型血缘关系
  61. def handle_model_relation(resource_ids):
  62. """
  63. 处理数据模型血缘关系
  64. Args:
  65. resource_ids: 数据资源ID
  66. Returns:
  67. 血缘关系数据
  68. """
  69. query = """
  70. MATCH (search:data_resource)-[:connection]->(common_node:meta_node)<-[:connection]-(connect:data_resource)
  71. WHERE id(search) = $resource_Ids
  72. WITH search, connect, common_node
  73. MATCH (search)-[:connection]->(search_node:meta_node)
  74. WITH search, connect, common_node, collect(DISTINCT id(search_node)) AS search_nodes
  75. MATCH (connect)-[:connection]->(connect_node:meta_node)
  76. WITH search, connect, common_node, search_nodes, collect(DISTINCT id(connect_node)) AS connect_nodes
  77. WITH search, connect, search_nodes, connect_nodes, collect(DISTINCT id(common_node)) AS common_nodes
  78. // 剔除 search_nodes 和 connect_nodes 中包含在 common_nodes 中的内容
  79. WITH search, connect, common_nodes,
  80. [node IN search_nodes WHERE NOT node IN common_nodes] AS filtered_search_nodes,
  81. [node IN connect_nodes WHERE NOT node IN common_nodes] AS filtered_connect_nodes
  82. RETURN id(connect) as blood_resources, common_nodes,
  83. filtered_search_nodes as origin_nodes, filtered_connect_nodes as blood_nodes
  84. """
  85. with connect_graph().session() as session:
  86. result = session.run(query, resource_Ids=resource_ids)
  87. return result.data()
  88. # 创建一个数据模型节点
  89. def handle_data_model(data_model, result_list, result, receiver):
  90. """
  91. 创建一个数据模型节点
  92. Args:
  93. data_model: 数据模型名称
  94. result_list: 数据模型英文名列表
  95. result: 序列化的ID列表
  96. receiver: 接收到的请求参数
  97. Returns:
  98. tuple: (id, data_model_node)
  99. """
  100. try:
  101. # 添加数据资源 血缘关系的字段 blood_resource
  102. data_model_en = result_list[0] if result_list and len(result_list) > 0 else ""
  103. receiver['id_list'] = result
  104. add_attribute = {
  105. 'time': get_formatted_time(),
  106. 'en_name': data_model_en
  107. }
  108. receiver.update(add_attribute)
  109. data_model_node = get_node('data_model', name=data_model) or create_or_get_node('data_model', **receiver)
  110. # 安全地处理子节点关系
  111. child_list = receiver.get('childrenId', [])
  112. for child_id in child_list:
  113. child_node = get_node_by_id_no_label(child_id)
  114. if child_node and not relationship_exists(data_model_node, 'child', child_node):
  115. with connect_graph().session() as session:
  116. session.execute_write(
  117. lambda tx: tx.run(
  118. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:child]->(b)",
  119. a_id=data_model_node.id, b_id=child_node.id
  120. )
  121. )
  122. # 根据传入参数id,和数据标签建立关系
  123. if receiver.get('tag'):
  124. tag = get_node_by_id('data_label', receiver['tag'])
  125. if tag and not relationship_exists(data_model_node, 'label', tag):
  126. with connect_graph().session() as session:
  127. session.execute_write(
  128. lambda tx: tx.run(
  129. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:label]->(b)",
  130. a_id=data_model_node.id, b_id=tag.id
  131. )
  132. )
  133. # 获取节点ID
  134. node_id = None
  135. if hasattr(data_model_node, 'id'):
  136. node_id = data_model_node.id
  137. else:
  138. # 如果节点没有identity属性,尝试通过查询获取
  139. query = """
  140. MATCH (n:data_model {name: $name})
  141. RETURN id(n) as node_id
  142. """
  143. with connect_graph().session() as session:
  144. result = session.run(query, name=data_model)
  145. record = result.single()
  146. if record and "node_id" in record:
  147. node_id = record["node_id"]
  148. return node_id, data_model_node
  149. except Exception as e:
  150. logging.error(f"Error in handle_data_model: {str(e)}")
  151. raise
  152. # (从数据资源中选取)
  153. def resource_handle_meta_data_model(id_lists, data_model_node_id):
  154. """
  155. 处理从数据资源中选取的数据模型与元数据的关系
  156. Args:
  157. id_lists: ID列表
  158. data_model_node_id: 数据模型节点ID
  159. Returns:
  160. None
  161. """
  162. try:
  163. logger.info(f"开始处理数据模型与元数据的关系,数据模型ID: {data_model_node_id}")
  164. # 构建meta_id和resouce_id的列表
  165. resouce_ids = [record['resource_id'] for record in id_lists]
  166. meta_ids = [record['id'] for id_list in id_lists for record in id_list['metaData']]
  167. logger.info(f"资源ID列表: {resouce_ids}")
  168. logger.info(f"元数据ID列表: {meta_ids}")
  169. # 创建与meta_node的关系 组成关系
  170. if meta_ids:
  171. logger.info("开始创建数据模型与元数据的关系")
  172. query = """
  173. MATCH (source:data_model), (target:meta_node)
  174. WHERE id(source)=$source_id AND id(target) IN $target_ids
  175. MERGE (source)-[:INCLUDE]->(target)
  176. RETURN count(*) as count
  177. """
  178. with connect_graph().session() as session:
  179. result = session.run(query, source_id=data_model_node_id, target_ids=meta_ids)
  180. count = result.single()["count"]
  181. logger.info(f"成功创建 {count} 个数据模型与元数据的关系")
  182. # 创建与data_resource的关系 资源关系
  183. if resouce_ids:
  184. logger.info("开始创建数据模型与数据资源的关系")
  185. query = """
  186. MATCH (source:data_model), (target:data_resource)
  187. WHERE id(source)=$source_id AND id(target) IN $target_ids
  188. MERGE (source)-[:DERIVES_FROM]->(target)
  189. RETURN count(*) as count
  190. """
  191. with connect_graph().session() as session:
  192. result = session.run(query, source_id=data_model_node_id, target_ids=resouce_ids)
  193. count = result.single()["count"]
  194. logger.info(f"成功创建 {count} 个数据模型与数据资源的关系")
  195. except Exception as e:
  196. logger.error(f"处理数据模型与元数据的关系时发生错误: {str(e)}")
  197. raise
  198. # (从数据模型中选取)
  199. def model_handle_meta_data_model(id_lists, data_model_node_id):
  200. """
  201. 处理从数据模型中选取的数据模型与元数据的关系
  202. Args:
  203. id_lists: ID列表
  204. data_model_node_id: 数据模型节点ID
  205. Returns:
  206. None
  207. """
  208. # 构建meta_id和model_id的列表
  209. model_ids = [record['model_id'] for record in id_lists]
  210. meta_ids = [record['id'] for id_list in id_lists for record in id_list['metaData']]
  211. # 创建与meta_node的关系 组成关系
  212. if meta_ids:
  213. query = """
  214. MATCH (source:data_model), (target:meta_node)
  215. WHERE id(source)=$source_id AND id(target) IN $target_ids
  216. MERGE (source)-[:component]->(target)
  217. """
  218. with neo4j_driver.get_session() as session:
  219. session.run(query, source_id=data_model_node_id, target_ids=meta_ids)
  220. # 创建与data_model的关系 模型关系
  221. if model_ids:
  222. query = """
  223. MATCH (source:data_model), (target:data_model)
  224. WHERE id(source)=$source_id AND id(target) IN $target_ids
  225. MERGE (source)-[:use]->(target)
  226. """
  227. with neo4j_driver.get_session() as session:
  228. session.run(query, source_id=data_model_node_id, target_ids=model_ids)
  229. # (从DDL中选取)
  230. def handle_no_meta_data_model(id_lists, receiver, data_model_node):
  231. """
  232. 处理从DDL中选取的没有元数据的数据模型
  233. Args:
  234. id_lists: ID列表
  235. receiver: 接收到的请求参数
  236. data_model_node: 数据模型节点
  237. Returns:
  238. None
  239. """
  240. # 构建meta_id和resouce_id的列表
  241. resouce_ids = [record['resource_id'] for record in id_lists]
  242. meta_ids = [record['id'] for id_list in id_lists for record in id_list['metaData']]
  243. # 获取数据模型节点ID
  244. data_model_node_id = None
  245. if hasattr(data_model_node, 'id'):
  246. data_model_node_id = data_model_node.id
  247. else:
  248. # 如果节点没有id属性,尝试通过查询获取
  249. query = """
  250. MATCH (n:data_model {name: $name})
  251. RETURN id(n) as node_id
  252. """
  253. with connect_graph().session() as session:
  254. result = session.run(query, name=data_model_node.get('name'))
  255. record = result.single()
  256. if record:
  257. data_model_node_id = record["node_id"]
  258. if not data_model_node_id:
  259. return
  260. # 创建与data_resource的关系 资源关系
  261. if resouce_ids:
  262. query = """
  263. MATCH (source:data_model), (target:data_resource)
  264. WHERE id(source)=$source_id AND id(target) IN $target_ids
  265. MERGE (source)-[:resource]->(target)
  266. """
  267. with connect_graph().session() as session:
  268. session.run(query, source_id=data_model_node_id, target_ids=resouce_ids)
  269. if meta_ids:
  270. meta_node_list = []
  271. for id in meta_ids:
  272. query = """
  273. MATCH (n)
  274. WHERE id(n) = $node_id
  275. RETURN n
  276. """
  277. with connect_graph().session() as session:
  278. result = session.run(query, node_id=id)
  279. if result:
  280. record = result.data()
  281. if record:
  282. meta_node_list.append(record[0]['n'])
  283. # 提取接收到的数据并创建meta_node节点
  284. meta_node = None
  285. resource_ids = []
  286. for item in id_lists:
  287. resource_id = item['resource_id']
  288. resource_ids.append(resource_id)
  289. for meta_item in item['metaData']:
  290. meta_id = meta_item['id']
  291. data_standard = meta_item.get('data_standard', '')
  292. en_name_zh = meta_item.get('en_name_zh', '')
  293. data_name = meta_item.get('data_name', '')
  294. # 使用传递的参数创建meta_node节点
  295. meta_params = {
  296. 'name': data_name,
  297. 'cn_name': en_name_zh,
  298. 'standard': data_standard,
  299. 'time': get_formatted_time()
  300. }
  301. # 创建meta_node节点
  302. meta_node = create_or_get_node('meta_node', **meta_params)
  303. # 创建与data_model的关系
  304. if meta_node and not relationship_exists(data_model_node, 'component', meta_node):
  305. with connect_graph().session() as session:
  306. session.execute_write(
  307. lambda tx: tx.run(
  308. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:component]->(b)",
  309. a_id=data_model_node.id, b_id=meta_node.id
  310. )
  311. )
  312. # 数据模型-详情接口
  313. def handle_id_model(id):
  314. """
  315. 获取数据模型详情
  316. Args:
  317. id: 数据模型的节点ID
  318. Returns:
  319. dict: 包含数据模型详情的字典,格式为:
  320. {"data_model": {
  321. "resource_selected": [...],
  322. "leader": ...,
  323. "origin": ...,
  324. "frequency": ...,
  325. "childrenId": [...],
  326. "organization": ...,
  327. "name": ...,
  328. "en_name": ...,
  329. "data_sensitivity": ...,
  330. "describe": ...,
  331. "tag": ...,
  332. "time": ...,
  333. "category": ...,
  334. "status": ...
  335. }}
  336. """
  337. node_id = id
  338. cql = """
  339. MATCH (n:data_model) WHERE id(n) = $nodeId
  340. OPTIONAL MATCH (n)-[:connection]->(meta:meta_node)
  341. OPTIONAL MATCH (n)<-[:belongs_to]-(resource:data_resource)
  342. OPTIONAL MATCH (n)-[:label]->(tag:data_label)
  343. OPTIONAL MATCH (uses:model_use)-[:use]->(n)
  344. OPTIONAL MATCH (n)-[:has_component]->(component)
  345. WITH n,
  346. collect(DISTINCT meta) as meta_nodes,
  347. collect(DISTINCT resource) as resources,
  348. collect(DISTINCT component) as components,
  349. collect(DISTINCT uses) as uses,
  350. collect(DISTINCT tag) as tags,
  351. CASE WHEN n.childrenId IS NOT NULL THEN n.childrenId ELSE [] END as children
  352. RETURN {
  353. // 基本信息
  354. id: id(n),
  355. name: n.name,
  356. en_name: n.en_name,
  357. time: n.time,
  358. description: n.description,
  359. describe: n.description, // 使用description作为describe字段
  360. category: n.category,
  361. level: n.level,
  362. tag: CASE WHEN size(tags) > 0 AND tags[0] IS NOT NULL THEN {id: id(tags[0]), name: tags[0].name} ELSE null END,
  363. // 添加其他必需字段
  364. leader: n.leader,
  365. origin: n.origin,
  366. blood_resource: n.blood_resource,
  367. frequency: n.frequency,
  368. organization: n.organization,
  369. data_sensitivity: n.data_sensitivity,
  370. status: n.status,
  371. // 子节点列表
  372. childrenId: children
  373. } AS result,
  374. // 资源列表
  375. [{
  376. data_resource: [resource IN resources WHERE resource IS NOT NULL | {
  377. id: id(resource),
  378. name: resource.name,
  379. en_name: resource.en_name,
  380. description: resource.description
  381. }],
  382. resource_id: [resource IN resources WHERE resource IS NOT NULL | id(resource)],
  383. meta_ids: [meta IN meta_nodes WHERE meta IS NOT NULL | {
  384. id: id(meta),
  385. name: meta.name,
  386. en_name: meta.en_name,
  387. data_type: meta.data_type
  388. }]
  389. }] AS resource_selected
  390. """
  391. with connect_graph().session() as session:
  392. result = session.run(cql, nodeId=node_id)
  393. # 处理查询结果
  394. record = result.single()
  395. logging.info(f"获得查询结果---------->>>{record}")
  396. if record:
  397. # 获取基本属性和资源选择列表
  398. properties = record["result"]
  399. resource_selected = record["resource_selected"]
  400. # 确保所有必需字段都有默认值,避免空值
  401. required_fields = ['tag', 'description', 'leader', 'origin', 'blood_resource',
  402. 'frequency', 'describe', 'organization', 'name', 'en_name',
  403. 'data_sensitivity', 'time', 'category', 'status', 'childrenId']
  404. for field in required_fields:
  405. if field not in properties or properties[field] is None:
  406. if field == 'tag':
  407. properties[field] = {}
  408. elif field == 'childrenId':
  409. properties[field] = []
  410. else:
  411. properties[field] = ""
  412. # 构建最终返回格式
  413. final_data = {
  414. "resource_selected": resource_selected,
  415. **properties
  416. }
  417. return {"data_model": final_data}
  418. else:
  419. # 如果没有查询到结果,返回空的结构
  420. return {"data_model": {
  421. "resource_selected": [{"meta_ids": [], "data_resource": None, "resource_id": None}],
  422. "leader": None, "origin": None, "frequency": None, "childrenId": [],
  423. "organization": None, "name": None, "en_name": None, "data_sensitivity": None,
  424. "describe": None, "tag": {}, "time": None, "category": None, "status": None
  425. }}
  426. # 数据模型列表
  427. def model_list(skip_count, page_size, en_name_filter=None, name_filter=None,
  428. category=None, tag=None, level=None):
  429. """
  430. 获取数据模型列表
  431. Args:
  432. skip_count: 跳过的数量
  433. page_size: 页面大小
  434. en_name_filter: 英文名称过滤条件
  435. name_filter: 名称过滤条件
  436. category: 类别过滤条件
  437. tag: 标签过滤条件
  438. level: 层级过滤条件
  439. Returns:
  440. tuple: (数据模型列表, 总数量)
  441. """
  442. try:
  443. # 构建where子句
  444. where_clause = []
  445. params = {}
  446. if name_filter is not None:
  447. where_clause.append("n.name =~ $name")
  448. params['name'] = f".*{name_filter}.*"
  449. if en_name_filter is not None:
  450. where_clause.append("n.en_name =~ $en_name")
  451. params['en_name'] = f".*{en_name_filter}.*"
  452. if category is not None:
  453. where_clause.append("n.category = $category")
  454. params['category'] = category
  455. if level is not None:
  456. where_clause.append("n.level = $level")
  457. params['level'] = level
  458. if tag is not None:
  459. where_clause.append("id(t) = $tag")
  460. params['tag'] = tag
  461. # At the end of where_clause construction
  462. where_str = " AND ".join(where_clause)
  463. if where_str:
  464. where_str = f"WHERE {where_str}"
  465. # 构建查询
  466. with connect_graph().session() as session:
  467. # 计算总数量
  468. count_query = f"""
  469. MATCH (n:data_model)
  470. OPTIONAL MATCH (n)-[:label]->(t)
  471. {where_str}
  472. RETURN COUNT(DISTINCT n) AS count
  473. """
  474. count_result = session.run(count_query, **params)
  475. count_record = count_result.single()
  476. total = count_record['count'] if count_record else 0
  477. # 查询数据
  478. query = f"""
  479. MATCH (n:data_model)
  480. OPTIONAL MATCH (n)-[:label]->(t)
  481. {where_str}
  482. RETURN DISTINCT
  483. id(n) as id,
  484. n.name as name,
  485. n.en_name as en_name,
  486. n.time as time,
  487. n.description as description,
  488. n.level as level,
  489. id(t) as tag_id,
  490. t.name as tag_name
  491. ORDER BY n.time DESC
  492. SKIP $skip
  493. LIMIT $limit
  494. """
  495. result = session.run(query, skip=skip_count, limit=page_size, **params)
  496. # 处理结果
  497. data = []
  498. for record in result:
  499. item = {
  500. "id": record['id'],
  501. "name": record['name'],
  502. "en_name": record['en_name'],
  503. "time": record['time'],
  504. "description": record['description'],
  505. "level": record['level'],
  506. "tag": {"id": record['tag_id'], "name": record['tag_name']} if record['tag_id'] is not None else None
  507. }
  508. data.append(item)
  509. return data, total
  510. except Exception as e:
  511. print(f"Error in model_list: {str(e)}")
  512. import traceback
  513. traceback.print_exc()
  514. return [], 0
  515. # 有血缘关系的数据资源列表
  516. def model_resource_list(skip_count, page_size, name_filter=None, id=None,
  517. category=None, time=None):
  518. """
  519. 获取数据模型相关的数据资源列表
  520. Args:
  521. skip_count: 跳过的数量
  522. page_size: 页面大小
  523. name_filter: 名称过滤条件
  524. id: 数据模型ID
  525. category: 类别过滤条件
  526. time: 时间过滤条件
  527. Returns:
  528. tuple: (数据资源列表, 总数量)
  529. """
  530. try:
  531. # 构建基础查询
  532. base_query = """
  533. MATCH (n:data_model)
  534. WHERE id(n) = $nodeId
  535. MATCH (n)-[:children]->(m:data_resource)
  536. """
  537. # 计算总数量
  538. count_query = base_query + """
  539. RETURN COUNT(m) as count
  540. """
  541. with connect_graph().session() as session:
  542. # 执行计数查询
  543. count_result = session.run(count_query, nodeId=id)
  544. count_record = count_result.single()
  545. total = count_record['count'] if count_record else 0
  546. # 使用分页和筛选条件构建主查询
  547. main_query = base_query + """
  548. MATCH (m)-[:label]->(l)
  549. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  550. RETURN m.name as name,
  551. m.en_name as en_name,
  552. id(m) as id,
  553. l.name as label,
  554. m.time as time,
  555. m.description as description,
  556. m.category as category
  557. ORDER BY m.time DESC
  558. SKIP $skip LIMIT $limit
  559. """
  560. # 执行主查询
  561. result = session.run(main_query, nodeId=id, skip=skip_count, limit=page_size)
  562. # 处理结果
  563. data = []
  564. for record in result:
  565. item = {
  566. "name": record['name'],
  567. "en_name": record['en_name'],
  568. "id": record['id'],
  569. "label": record['label'],
  570. "time": record['time'],
  571. "description": record['description'],
  572. "category": record['category']
  573. }
  574. data.append(item)
  575. return data, total
  576. except Exception as e:
  577. print(f"Error in model_resource_list: {str(e)}")
  578. import traceback
  579. traceback.print_exc()
  580. return [], 0
  581. # 数据模型血缘图谱
  582. def model_kinship_graph(nodeid, meta=False):
  583. """
  584. 生成数据模型的血缘关系图谱
  585. Args:
  586. nodeid: 节点ID
  587. meta: 是否包含元数据
  588. Returns:
  589. dict: 包含节点和连线信息的图谱数据
  590. """
  591. result = {}
  592. with connect_graph().session() as session:
  593. # 查询起始模型节点
  594. start_node_query = """
  595. MATCH (n:data_model)
  596. WHERE id(n) = $nodeId
  597. RETURN n.name as name, n.en_name as en_name
  598. """
  599. start_result = session.run(start_node_query, nodeId=nodeid)
  600. start_record = start_result.single()
  601. if not start_record:
  602. return {"nodes": [], "lines": []}
  603. # 查询与模型关联的数据资源
  604. resource_query = """
  605. MATCH (n:data_model)
  606. WHERE id(n) = $nodeId
  607. MATCH p = (n)-[:children]->(resource:data_resource)
  608. RETURN resource
  609. """
  610. resource_result = session.run(resource_query, nodeId=nodeid)
  611. nodes = [{"id": str(nodeid), "text": start_record['name'], "type": "model"}]
  612. lines = []
  613. # 处理资源节点
  614. for record in resource_result:
  615. if 'resource' in record:
  616. resource = record['resource']
  617. resource_id = str(resource.id)
  618. resource_name = resource.get('name', '')
  619. resource_en_name = resource.get('en_name', '')
  620. # 创建资源节点
  621. resource_node = {
  622. "id": resource_id,
  623. "text": resource_name,
  624. "type": "resource"
  625. }
  626. nodes.append(resource_node)
  627. # 创建资源到模型的关系
  628. line = {
  629. "from": str(nodeid),
  630. "to": resource_id,
  631. "text": "resource"
  632. }
  633. lines.append(line)
  634. # 处理元数据节点
  635. if meta:
  636. meta_query = """
  637. MATCH (n:data_model)
  638. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  639. MATCH p = (n)-[:meta]->(meta:meta_node)
  640. RETURN meta
  641. """
  642. meta_result = session.run(meta_query, nodeId=nodeid)
  643. for record in meta_result:
  644. if 'meta' in record:
  645. meta_node = record['meta']
  646. meta_id = str(meta.id)
  647. meta_name = meta.get('name', '')
  648. meta_en_name = meta.get('en_name', '')
  649. # 创建元数据节点
  650. meta_node = {
  651. "id": meta_id,
  652. "text": meta_name,
  653. "type": "meta"
  654. }
  655. nodes.append(meta_node)
  656. # 创建模型到元数据的标签关系
  657. tag_line = {
  658. "from": str(nodeid),
  659. "to": meta_id,
  660. "text": "component"
  661. }
  662. lines.append(tag_line)
  663. # 构建结果
  664. result = {
  665. "nodes": nodes,
  666. "lines": lines
  667. }
  668. return result
  669. # 数据模型影响图谱
  670. def model_impact_graph(nodeid, meta=False):
  671. """
  672. 生成数据模型的影响关系图谱
  673. Args:
  674. nodeid: 节点ID
  675. meta: 是否包含元数据
  676. Returns:
  677. dict: 包含节点和连线信息的图谱数据
  678. """
  679. result = {}
  680. with connect_graph().session() as session:
  681. # 查询起始模型节点
  682. start_node_query = """
  683. MATCH (n:data_model)
  684. WHERE id(n) = $nodeId
  685. RETURN n.name as name, n.en_name as en_name
  686. """
  687. start_result = session.run(start_node_query, nodeId=nodeid)
  688. start_record = start_result.single()
  689. if not start_record:
  690. return {"nodes": [], "lines": []}
  691. # 查询影响模型的数据资源
  692. resource_query = """
  693. MATCH (n:data_model)
  694. WHERE id(n) = $nodeId
  695. MATCH p = (n)-[:children]->(resource:data_resource)
  696. RETURN resource
  697. """
  698. resource_result = session.run(resource_query, nodeId=nodeid)
  699. nodes = [{"id": str(nodeid), "text": start_record['name'], "type": "model"}]
  700. lines = []
  701. # 处理资源节点
  702. for record in resource_result:
  703. if 'resource' in record:
  704. resource = record['resource']
  705. resource_id = str(resource.id)
  706. resource_name = resource.get('name', '')
  707. resource_en_name = resource.get('en_name', '')
  708. # 创建资源节点
  709. resource_node = {
  710. "id": resource_id,
  711. "text": resource_name,
  712. "type": "resource"
  713. }
  714. nodes.append(resource_node)
  715. # 创建资源到模型的关系
  716. line = {
  717. "from": str(nodeid),
  718. "to": resource_id,
  719. "text": "resource"
  720. }
  721. lines.append(line)
  722. # 处理元数据节点
  723. if meta:
  724. meta_query = """
  725. MATCH (n:data_model)
  726. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  727. MATCH p = (n)-[:meta]->(meta:meta_node)
  728. RETURN meta
  729. """
  730. meta_result = session.run(meta_query, nodeId=nodeid)
  731. for record in meta_result:
  732. if 'meta' in record:
  733. meta_node = record['meta']
  734. meta_id = str(meta.id)
  735. meta_name = meta.get('name', '')
  736. meta_en_name = meta.get('en_name', '')
  737. # 创建元数据节点
  738. meta_node = {
  739. "id": meta_id,
  740. "text": meta_name,
  741. "type": "meta"
  742. }
  743. nodes.append(meta_node)
  744. # 创建模型到元数据的标签关系
  745. tag_line = {
  746. "from": str(nodeid),
  747. "to": meta_id,
  748. "text": "component"
  749. }
  750. lines.append(tag_line)
  751. # 构建结果
  752. result = {
  753. "nodes": nodes,
  754. "lines": lines
  755. }
  756. return result
  757. # 数据模型全部图谱
  758. def model_all_graph(nodeid, meta=False):
  759. """
  760. 生成数据模型的所有关系图谱
  761. Args:
  762. nodeid: 节点ID
  763. meta: 是否包含元数据
  764. Returns:
  765. dict: 包含节点和连线信息的图谱数据
  766. """
  767. result = {}
  768. with connect_graph().session() as session:
  769. # 查询起始模型节点
  770. start_node_query = """
  771. MATCH (n:data_model)
  772. WHERE id(n) = $nodeId
  773. RETURN n.name as name, n.en_name as en_name
  774. """
  775. start_result = session.run(start_node_query, nodeId=nodeid)
  776. start_record = start_result.single()
  777. if not start_record:
  778. return {"nodes": [], "lines": []}
  779. # 查询与模型关联的数据资源
  780. resource_query = """
  781. MATCH (n:data_model)
  782. WHERE id(n) = $nodeId
  783. MATCH p = (n)-[:children]->(resource:data_resource)
  784. RETURN resource
  785. """
  786. resource_result = session.run(resource_query, nodeId=nodeid)
  787. # 查询与模型关联的元数据
  788. meta_query = """
  789. MATCH (n:data_model)
  790. WHERE id(n) = $nodeId and labels(m) <> ['meta_node']
  791. MATCH p = (n)-[:meta]->(meta:meta_node)
  792. RETURN meta
  793. """
  794. nodes = [{"id": str(nodeid), "text": start_record['name'], "type": "model"}]
  795. lines = []
  796. # 处理资源节点
  797. for record in resource_result:
  798. if 'resource' in record:
  799. resource = record['resource']
  800. resource_id = str(resource.id)
  801. resource_name = resource.get('name', '')
  802. resource_en_name = resource.get('en_name', '')
  803. # 创建资源节点
  804. resource_node = {
  805. "id": resource_id,
  806. "text": resource_name,
  807. "type": "resource"
  808. }
  809. nodes.append(resource_node)
  810. # 创建资源到模型的关系
  811. line = {
  812. "from": str(nodeid),
  813. "to": resource_id,
  814. "text": "resource"
  815. }
  816. lines.append(line)
  817. # 处理元数据节点
  818. if meta:
  819. meta_result = session.run(meta_query, nodeId=nodeid)
  820. for record in meta_result:
  821. if 'meta' in record:
  822. meta_node = record['meta']
  823. meta_id = str(meta.id)
  824. meta_name = meta.get('name', '')
  825. meta_en_name = meta.get('en_name', '')
  826. # 创建元数据节点
  827. meta_node = {
  828. "id": meta_id,
  829. "text": meta_name,
  830. "type": "meta"
  831. }
  832. nodes.append(meta_node)
  833. # 创建模型到元数据的标签关系
  834. tag_line = {
  835. "from": str(nodeid),
  836. "to": meta_id,
  837. "text": "component"
  838. }
  839. lines.append(tag_line)
  840. # 构建结果
  841. result = {
  842. "nodes": nodes,
  843. "lines": lines
  844. }
  845. return result
  846. # 更新数据模型
  847. def data_model_edit(receiver):
  848. """
  849. 更新数据模型
  850. Args:
  851. receiver: 接收到的请求参数
  852. Returns:
  853. 更新结果
  854. """
  855. id = receiver.get('id')
  856. name = receiver.get('name')
  857. en_name = receiver.get('en_name')
  858. category = receiver.get('category')
  859. description = receiver.get('description')
  860. tag = receiver.get('tag')
  861. # 更新数据模型节点
  862. query = """
  863. MATCH (n:data_model) WHERE id(n) = $id
  864. SET n.name = $name, n.en_name = $en_name, n.category = $category, n.description = $description
  865. RETURN n
  866. """
  867. with connect_graph().session() as session:
  868. result = session.run(query, id=id, name=name, en_name=en_name,
  869. category=category, description=description).data()
  870. # 处理标签关系
  871. if tag:
  872. # 先删除所有标签关系
  873. delete_query = """
  874. MATCH (n:data_model)-[r:label]->() WHERE id(n) = $id
  875. DELETE r
  876. """
  877. with connect_graph().session() as session:
  878. session.run(delete_query, id=id)
  879. # 再创建新的标签关系
  880. tag_node = get_node_by_id('data_label', tag)
  881. if tag_node:
  882. model_node = get_node_by_id_no_label(id)
  883. if model_node and not relationship_exists(model_node, 'label', tag_node):
  884. with connect_graph().session() as session:
  885. session.execute_write(
  886. lambda tx: tx.run(
  887. "MATCH (a), (b) WHERE id(a) = $a_id AND id(b) = $b_id CREATE (a)-[:label]->(b)",
  888. a_id=model_node.id, b_id=tag_node.id
  889. )
  890. )
  891. return {"message": "数据模型更新成功"}