# config.py import os # PostgreSQL 连接信息 PG_CONFIG = { "host": "localhost", "port": 5432, "user": "postgres", "password": "postgres", "database": "dataops", } # Neo4j 连接信息 NEO4J_CONFIG = { "uri": "bolt://192.168.67.1:7687", "user": "neo4j", "password": "Passw0rd", } # Airflow 自身配置(如果有需要,例如用 REST API 触发其他 DAG) AIRFLOW_CONFIG = { "base_url": "http://localhost:8080", "username": "admin", "password": "admin", } # 任务重试配置 TASK_RETRY_CONFIG = { "retries": 2, # 重试次数 "retry_delay_minutes": 1 # 重试延迟(分钟) } # 脚本文件基础路径配置 # 部署到 Airflow 环境时使用此路径 AIRFLOW_BASE_PATH='/opt/airflow' DATAOPS_DAGS_PATH = os.path.join(AIRFLOW_BASE_PATH, 'dags') SCRIPTS_BASE_PATH = os.path.join(AIRFLOW_BASE_PATH, 'dataops_scripts') # 上传的CSV/EXCEL文件的基准上传路径 STRUCTURE_UPLOAD_BASE_PATH ="/data/csv" STRUCTURE_UPLOAD_ARCHIVE_BASE_PATH ="/data/archive" # 本地开发环境脚本路径(如果需要区分环境) # LOCAL_SCRIPTS_BASE_PATH = "/path/to/local/scripts" # 执行计划保留的数量 EXECUTION_PLAN_KEEP_COUNT = 5 # ETL作业幂等性开关 ENABLE_ETL_IDEMPOTENCY = True