#!/usr/bin/env python # -*- coding: utf-8 -*- # 这是dataops_scripts目录下的文件 - 用于验证路径修改成功 import logging import sys from datetime import datetime, timedelta import pytz import re # 添加re模块以支持正则表达式 # 配置日志记录器 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(sys.stdout) ] ) logger = logging.getLogger("script_utils") def get_date_range(exec_date, frequency): """ 根据执行日期和频率,计算开始日期和结束日期 参数: exec_date (str): 执行日期,格式为 YYYY-MM-DD frequency (str): 频率,可选值为 daily, weekly, monthly, quarterly, yearly 返回: tuple: (start_date, end_date) 格式为 YYYY-MM-DD 的字符串 """ logger.info(f"计算日期范围 - 执行日期: {exec_date}, 频率: {frequency}") # 将输入的日期转换为上海时区的datetime对象 shanghai_tz = pytz.timezone('Asia/Shanghai') try: # 解析输入的exec_date if isinstance(exec_date, str): date_obj = datetime.strptime(exec_date, '%Y-%m-%d') elif isinstance(exec_date, datetime): date_obj = exec_date else: raise ValueError(f"不支持的exec_date类型: {type(exec_date)}") # 转换为上海时区 date_obj = shanghai_tz.localize(date_obj) logger.info(f"上海时区的执行日期: {date_obj}") # 根据不同频率计算日期范围 if frequency.lower() == 'daily': # 每日: start_date = exec_date, end_date = exec_date + 1 day start_date = date_obj.strftime('%Y-%m-%d') end_date = (date_obj + timedelta(days=1)).strftime('%Y-%m-%d') elif frequency.lower() == 'weekly': # 每周: start_date = 本周一, end_date = 下周一 days_since_monday = date_obj.weekday() # 0=周一, 6=周日 monday = date_obj - timedelta(days=days_since_monday) next_monday = monday + timedelta(days=7) start_date = monday.strftime('%Y-%m-%d') end_date = next_monday.strftime('%Y-%m-%d') elif frequency.lower() == 'monthly': # 每月: start_date = 本月第一天, end_date = 下月第一天 first_day = date_obj.replace(day=1) # 计算下个月的第一天 if first_day.month == 12: next_month_first_day = first_day.replace(year=first_day.year + 1, month=1) else: next_month_first_day = first_day.replace(month=first_day.month + 1) start_date = first_day.strftime('%Y-%m-%d') end_date = next_month_first_day.strftime('%Y-%m-%d') elif frequency.lower() == 'quarterly': # 每季度: start_date = 本季度第一天, end_date = 下季度第一天 quarter = (date_obj.month - 1) // 3 + 1 # 1-4季度 first_month_of_quarter = (quarter - 1) * 3 + 1 # 季度的第一个月 quarter_first_day = date_obj.replace(month=first_month_of_quarter, day=1) # 计算下个季度的第一天 if quarter == 4: next_quarter_first_day = quarter_first_day.replace(year=quarter_first_day.year + 1, month=1) else: next_quarter_first_day = quarter_first_day.replace(month=first_month_of_quarter + 3) start_date = quarter_first_day.strftime('%Y-%m-%d') end_date = next_quarter_first_day.strftime('%Y-%m-%d') elif frequency.lower() == 'yearly': # 每年: start_date = 本年第一天, end_date = 下年第一天 year_first_day = date_obj.replace(month=1, day=1) next_year_first_day = date_obj.replace(year=date_obj.year + 1, month=1, day=1) start_date = year_first_day.strftime('%Y-%m-%d') end_date = next_year_first_day.strftime('%Y-%m-%d') else: logger.error(f"不支持的频率: {frequency}") raise ValueError(f"不支持的频率: {frequency}") logger.info(f"计算结果 - 开始日期: {start_date}, 结束日期: {end_date}") return start_date, end_date except Exception as e: logger.error(f"计算日期范围时出错: {str(e)}", exc_info=True) raise import re from typing import Dict, List, Optional, Set def extract_source_fields_linked_to_template(sql: str, jinja_vars: List[str]) -> Set[str]: """ 从 SQL 中提取和 jinja 模板变量绑定的源字段(支持各种形式) """ fields = set() sql = re.sub(r"\s+", " ", sql) for var in jinja_vars: # 普通比较、函数包裹 pattern = re.compile( r""" (?P (?:\w+\s*\(\s*)? # 可选函数开始(如 DATE( [\w\.]+ # 字段名 (?:\s+AS\s+\w+)? # 可选 CAST 形式 \)? # 可选右括号 ) \s*(=|<|>|<=|>=)\s*['"]?\{\{\s*""" + var + r"""\s*\}\}['"]? """, re.IGNORECASE | re.VERBOSE ) fields.update(match.group("field").strip() for match in pattern.finditer(sql)) # BETWEEN '{{ start_date }}' AND '{{ end_date }}' if var == "start_date": pattern_between = re.compile( r"""(?P (?:\w+\s*\(\s*)?[\w\.]+(?:\s+AS\s+\w+)?\)? # 字段(函数包裹可选) ) \s+BETWEEN\s+['"]?\{\{\s*start_date\s*\}\}['"]?\s+AND\s+['"]?\{\{\s*end_date\s*\}\} """, re.IGNORECASE | re.VERBOSE ) fields.update(match.group("field").strip() for match in pattern_between.finditer(sql)) return {extract_core_field(f) for f in fields} def extract_core_field(expr: str) -> str: """ 清洗函数包裹的字段表达式:DATE(sd.sale_date) -> sd.sale_date, CAST(...) -> ... """ expr = re.sub(r"CAST\s*\(\s*([\w\.]+)\s+AS\s+\w+\s*\)", r"\1", expr, flags=re.IGNORECASE) expr = re.sub(r"\b\w+\s*\(\s*([\w\.]+)\s*\)", r"\1", expr) return expr.strip() def parse_select_aliases(sql: str) -> Dict[str, str]: """ 提取 SELECT 中的字段别名映射:原字段 -> 目标别名 """ sql = re.sub(r"\s+", " ", sql) select_clause_match = re.search(r"SELECT\s+(.*?)\s+FROM", sql, re.IGNORECASE) if not select_clause_match: return {} select_clause = select_clause_match.group(1) mappings = {} for expr in select_clause.split(","): expr = expr.strip() alias_match = re.match(r"([\w\.]+)\s+AS\s+([\w]+)", expr, re.IGNORECASE) if alias_match: source, alias = alias_match.groups() mappings[source.strip()] = alias.strip() return mappings def find_target_date_field(sql: str, jinja_vars: List[str] = ["start_date", "end_date"]) -> Optional[str]: """ 从 SQL 中找出与模板时间变量绑定的目标表字段(只返回一个) """ source_fields = extract_source_fields_linked_to_template(sql, jinja_vars) alias_map = parse_select_aliases(sql) # 匹配 SELECT 中的映射字段 for src_field in source_fields: if src_field in alias_map: return alias_map[src_field] # 源字段映射的目标字段 # 若未通过 AS 映射,可能直接 SELECT sd.sale_date(裸字段) for src_field in source_fields: if '.' not in src_field: return src_field # 裸字段直接作为目标字段名 return None def generate_delete_sql(sql_content, target_table=None): """ 根据SQL脚本内容生成用于清理数据的DELETE语句 参数: sql_content (str): 原始SQL脚本内容 target_table (str, optional): 目标表名,如果SQL脚本中无法解析出表名时使用 返回: str: DELETE语句,用于清理数据 """ logger.info("生成清理SQL语句,实现ETL作业幂等性") # 如果提供了目标表名,直接使用 if target_table: logger.info(f"使用提供的目标表名: {target_table}") delete_stmt = f"""DELETE FROM {target_table} WHERE summary_date >= '{{{{ start_date }}}}' AND summary_date < '{{{{ end_date }}}}';""" logger.info(f"生成的清理SQL: {delete_stmt}") return delete_stmt # 尝试从SQL内容中解析出目标表名 try: # 简单解析,尝试找出INSERT语句的目标表 # 匹配 INSERT INTO xxx 或 INSERT INTO "xxx" 或 INSERT INTO `xxx` 或 INSERT INTO [xxx] insert_match = re.search(r'INSERT\s+INTO\s+(?:["\[`])?([a-zA-Z0-9_\.]+)(?:["\]`])?', sql_content, re.IGNORECASE) if insert_match: table_name = insert_match.group(1) logger.info(f"从SQL中解析出目标表名: {table_name}") delete_stmt = f"""DELETE FROM {table_name} WHERE summary_date >= '{{{{ start_date }}}}' AND summary_date < '{{{{ end_date }}}}';""" logger.info(f"生成的清理SQL: {delete_stmt}") return delete_stmt else: logger.warning("无法从SQL中解析出目标表名,无法生成清理SQL") return None except Exception as e: logger.error(f"解析SQL生成清理语句时出错: {str(e)}", exc_info=True) return None