""" 统一数据运维调度器 DAG 功能: 1. 将数据处理与统计汇总整合到一个DAG中 2. 保留原有的每个处理脚本单独运行的特性,方便通过Web UI查看 3. 支持执行计划文件的动态解析和执行 4. 执行完成后自动生成汇总报告 """ from airflow import DAG from airflow.operators.python import PythonOperator, ShortCircuitOperator from airflow.operators.empty import EmptyOperator from airflow.utils.task_group import TaskGroup from datetime import datetime, timedelta, date import logging import networkx as nx import json import os from decimal import Decimal from common import ( get_pg_conn, get_neo4j_driver, execute_with_monitoring, get_today_date ) from config import TASK_RETRY_CONFIG, SCRIPTS_BASE_PATH, PG_CONFIG, NEO4J_CONFIG # 创建日志记录器 logger = logging.getLogger(__name__) # 开启详细诊断日志记录 ENABLE_DEBUG_LOGGING = True def log_debug(message): """记录调试日志,但只在启用调试模式时""" if ENABLE_DEBUG_LOGGING: logger.info(f"[DEBUG] {message}") # 在DAG启动时输出诊断信息 log_debug("======== 诊断信息 ========") log_debug(f"当前工作目录: {os.getcwd()}") log_debug(f"SCRIPTS_BASE_PATH: {SCRIPTS_BASE_PATH}") log_debug(f"导入的common模块路径: {get_pg_conn.__module__}") # 检查数据库连接 def validate_database_connection(): """验证数据库连接是否正常""" try: conn = get_pg_conn() cursor = conn.cursor() cursor.execute("SELECT version()") version = cursor.fetchone() log_debug(f"数据库连接正常,PostgreSQL版本: {version[0]}") # 检查airflow_dag_schedule表是否存在 cursor.execute(""" SELECT EXISTS ( SELECT FROM information_schema.tables WHERE table_name = 'airflow_dag_schedule' ) """) table_exists = cursor.fetchone()[0] if table_exists: # 检查表结构 cursor.execute(""" SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'airflow_dag_schedule' """) columns = cursor.fetchall() log_debug(f"airflow_dag_schedule表存在,列信息:") for col in columns: log_debug(f" - {col[0]}: {col[1]}") # 查询最新记录数量 cursor.execute("SELECT COUNT(*) FROM airflow_dag_schedule") count = cursor.fetchone()[0] log_debug(f"airflow_dag_schedule表中有 {count} 条记录") # 检查最近的执行记录 cursor.execute(""" SELECT exec_date, COUNT(*) as record_count FROM airflow_dag_schedule GROUP BY exec_date ORDER BY exec_date DESC LIMIT 3 """) recent_dates = cursor.fetchall() log_debug(f"最近的执行日期及记录数:") for date_info in recent_dates: log_debug(f" - {date_info[0]}: {date_info[1]} 条记录") else: log_debug("airflow_dag_schedule表不存在!") cursor.close() conn.close() return True except Exception as e: log_debug(f"数据库连接验证失败: {str(e)}") import traceback log_debug(f"错误堆栈: {traceback.format_exc()}") return False # 执行数据库连接验证 try: validate_database_connection() except Exception as e: log_debug(f"验证数据库连接时出错: {str(e)}") log_debug("======== 诊断信息结束 ========") ############################################# # 通用工具函数 ############################################# def json_serial(obj): """将日期对象序列化为ISO格式字符串的JSON序列化器""" if isinstance(obj, (datetime, date)): return obj.isoformat() raise TypeError(f"类型 {type(obj)} 不能被序列化为JSON") # 添加自定义JSON编码器解决Decimal序列化问题 class DecimalEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Decimal): return float(obj) # 处理日期类型 elif isinstance(obj, (datetime, date)): return obj.isoformat() # 让父类处理其他类型 return super(DecimalEncoder, self).default(obj) ############################################# # 新的工具函数 ############################################# def execute_python_script(target_table, script_name, script_exec_mode, exec_date, **kwargs): """ 执行Python脚本并返回执行结果 参数: target_table: 目标表名 script_name: 脚本名称 script_exec_mode: 脚本执行模式 exec_date: 执行日期 返回: bool: 脚本执行结果 """ # 添加详细日志 logger.info(f"===== 开始执行脚本 =====") logger.info(f"target_table: {target_table}, 类型: {type(target_table)}") logger.info(f"script_name: {script_name}, 类型: {type(script_name)}") logger.info(f"script_exec_mode: {script_exec_mode}, 类型: {type(script_exec_mode)}") logger.info(f"exec_date: {exec_date}, 类型: {type(exec_date)}") # 检查script_name是否为空 if not script_name: logger.error(f"表 {target_table} 的script_name为空,无法执行") return False # 记录执行开始时间 start_time = datetime.now() try: # 执行实际脚本 logger.info(f"开始执行脚本: {script_name}") result = execute_python_script(script_name, target_table, script_exec_mode) logger.info(f"脚本执行完成,原始返回值: {result}, 类型: {type(result)}") # 确保result是布尔值 if result is None: logger.warning(f"脚本返回值为None,转换为False") result = False elif not isinstance(result, bool): original_result = result result = bool(result) logger.warning(f"脚本返回非布尔值 {original_result},转换为布尔值: {result}") # 记录结束时间和结果 end_time = datetime.now() duration = (end_time - start_time).total_seconds() logger.info(f"脚本 {script_name} 执行完成,结果: {result}, 耗时: {duration:.2f}秒") return result except Exception as e: # 处理异常 logger.error(f"执行任务出错: {str(e)}") end_time = datetime.now() duration = (end_time - start_time).total_seconds() logger.error(f"脚本 {script_name} 执行失败,耗时: {duration:.2f}秒") logger.info(f"===== 脚本执行异常结束 =====") # 确保不会阻塞DAG return False ############################################# # 第一阶段: 准备阶段(Prepare Phase)的函数 ############################################# def get_enabled_tables(): """获取所有启用的表""" conn = get_pg_conn() cursor = conn.cursor() try: cursor.execute(""" SELECT owner_id, table_name FROM schedule_status WHERE schedule_is_enabled = TRUE """) result = cursor.fetchall() return [row[1] for row in result] # 只返回表名 except Exception as e: logger.error(f"获取启用表失败: {str(e)}") return [] finally: cursor.close() conn.close() def check_table_directly_subscribed(table_name): """检查表是否在schedule_status表中直接订阅""" conn = get_pg_conn() cursor = conn.cursor() try: cursor.execute(""" SELECT schedule_is_enabled FROM schedule_status WHERE table_name = %s """, (table_name,)) result = cursor.fetchone() return result and result[0] is True except Exception as e: logger.error(f"检查表订阅状态失败: {str(e)}") return False finally: cursor.close() conn.close() def get_table_info_from_neo4j(table_name): """从Neo4j获取表的详细信息""" driver = get_neo4j_driver() # 检查表是否直接订阅 is_directly_schedule = check_table_directly_subscribed(table_name) table_info = { 'target_table': table_name, 'is_directly_schedule': is_directly_schedule, # 初始值设为True,从schedule_status表获取 } try: with driver.session() as session: # 查询表标签和状态 query_table = """ MATCH (t {en_name: $table_name}) RETURN labels(t) AS labels, t.status AS status, t.frequency AS frequency """ result = session.run(query_table, table_name=table_name) record = result.single() if record: labels = record.get("labels", []) table_info['target_table_label'] = [label for label in labels if label in ["DataResource", "DataModel", "DataSource"]][0] if labels else None table_info['target_table_status'] = record.get("status", True) # 默认为True table_info['default_update_frequency'] = record.get("frequency") # 根据标签类型查询关系和脚本信息 if "DataResource" in labels: query_rel = """ MATCH (target {en_name: $table_name})-[rel:ORIGINATES_FROM]->(source) RETURN source.en_name AS source_table, rel.script_name AS script_name, rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode """ elif "DataModel" in labels: query_rel = """ MATCH (target {en_name: $table_name})-[rel:DERIVED_FROM]->(source) RETURN source.en_name AS source_table, rel.script_name AS script_name, rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode """ else: logger.warning(f"表 {table_name} 不是DataResource或DataModel类型") return table_info result = session.run(query_rel, table_name=table_name) record = result.single() if record: table_info['source_table'] = record.get("source_table") # 检查script_name是否为空 script_name = record.get("script_name") if not script_name: logger.warning(f"表 {table_name} 的关系中没有script_name属性,可能导致后续处理出错") table_info['script_name'] = script_name # 设置默认值,确保即使属性为空也有默认值 table_info['script_type'] = record.get("script_type", "python") # 默认为python table_info['script_exec_mode'] = record.get("script_exec_mode", "append") # 默认为append else: logger.warning(f"未找到表 {table_name} 的关系信息") else: logger.warning(f"在Neo4j中找不到表 {table_name} 的信息") except Exception as e: logger.error(f"获取表 {table_name} 的信息时出错: {str(e)}") finally: driver.close() return table_info def process_dependencies(tables_info): """处理表间依赖关系,添加被动调度的表""" # 存储所有表信息的字典 all_tables = {t['target_table']: t for t in tables_info} driver = get_neo4j_driver() try: with driver.session() as session: for table_name, table_info in list(all_tables.items()): if table_info.get('target_table_label') == 'DataModel': # 查询其依赖表 query = """ MATCH (dm {en_name: $table_name})-[:DERIVED_FROM]->(dep) RETURN dep.en_name AS dep_name, labels(dep) AS dep_labels, dep.status AS dep_status, dep.frequency AS dep_frequency """ result = session.run(query, table_name=table_name) for record in result: dep_name = record.get("dep_name") dep_labels = record.get("dep_labels", []) dep_status = record.get("dep_status", True) dep_frequency = record.get("dep_frequency") # 处理未被直接调度的依赖表 if dep_name and dep_name not in all_tables: logger.info(f"发现被动依赖表: {dep_name}, 标签: {dep_labels}") # 获取依赖表详细信息 dep_info = get_table_info_from_neo4j(dep_name) dep_info['is_directly_schedule'] = False # 处理调度频率继承 if not dep_info.get('default_update_frequency'): dep_info['default_update_frequency'] = table_info.get('default_update_frequency') all_tables[dep_name] = dep_info except Exception as e: logger.error(f"处理依赖关系时出错: {str(e)}") finally: driver.close() return list(all_tables.values()) def filter_invalid_tables(tables_info): """过滤无效表及其依赖,使用NetworkX构建依赖图""" # 构建表名到索引的映射 table_dict = {t['target_table']: i for i, t in enumerate(tables_info)} # 找出无效表 invalid_tables = set() for table in tables_info: if table.get('target_table_status') is False: invalid_tables.add(table['target_table']) logger.info(f"表 {table['target_table']} 的状态为无效") # 构建依赖图 G = nx.DiGraph() # 添加所有节点 for table in tables_info: G.add_node(table['target_table']) # 查询并添加依赖边 driver = get_neo4j_driver() try: with driver.session() as session: for table in tables_info: if table.get('target_table_label') == 'DataModel': query = """ MATCH (source {en_name: $table_name})-[:DERIVED_FROM]->(target) RETURN target.en_name AS target_name """ result = session.run(query, table_name=table['target_table']) for record in result: target_name = record.get("target_name") if target_name and target_name in table_dict: # 添加从目标到源的边,表示目标依赖于源 G.add_edge(table['target_table'], target_name) logger.debug(f"添加依赖边: {table['target_table']} -> {target_name}") except Exception as e: logger.error(f"构建依赖图时出错: {str(e)}") finally: driver.close() # 找出依赖于无效表的所有表 downstream_invalid = set() for invalid_table in invalid_tables: # 获取可从无效表到达的所有节点 try: descendants = nx.descendants(G, invalid_table) downstream_invalid.update(descendants) logger.info(f"表 {invalid_table} 的下游无效表: {descendants}") except Exception as e: logger.error(f"处理表 {invalid_table} 的下游依赖时出错: {str(e)}") # 合并所有无效表 all_invalid = invalid_tables.union(downstream_invalid) logger.info(f"总共 {len(all_invalid)} 个表被标记为无效: {all_invalid}") # 过滤出有效表 valid_tables = [t for t in tables_info if t['target_table'] not in all_invalid] logger.info(f"过滤后保留 {len(valid_tables)} 个有效表") return valid_tables def write_to_airflow_dag_schedule(exec_date, tables_info): """将表信息写入airflow_dag_schedule表""" logger.info(f"模拟写入 {len(tables_info)} 条记录到 airflow_dag_schedule 表 (已移除数据库操作)") return len(tables_info) def prepare_dag_schedule(**kwargs): """准备DAG调度任务的主函数""" exec_date = kwargs.get('ds') or get_today_date() logger.info(f"开始准备执行日期 {exec_date} 的统一调度任务") # 1. 获取启用的表 enabled_tables = get_enabled_tables() logger.info(f"从schedule_status表获取到 {len(enabled_tables)} 个启用的表") if not enabled_tables: logger.warning("没有找到启用的表,准备工作结束") return 0 # 2. 获取表的详细信息 tables_info = [] for table_name in enabled_tables: table_info = get_table_info_from_neo4j(table_name) if table_info: tables_info.append(table_info) logger.info(f"成功获取 {len(tables_info)} 个表的详细信息") # 3. 处理依赖关系,添加被动调度的表 enriched_tables = process_dependencies(tables_info) logger.info(f"处理依赖后,总共有 {len(enriched_tables)} 个表") # 4. 过滤无效表及其依赖 valid_tables = filter_invalid_tables(enriched_tables) logger.info(f"过滤无效表后,最终有 {len(valid_tables)} 个有效表") # 5. 写入airflow_dag_schedule表 inserted_count = write_to_airflow_dag_schedule(exec_date, valid_tables) # 6. 检查插入操作是否成功,如果失败则抛出异常 if inserted_count == 0 and valid_tables: error_msg = f"插入操作失败,无记录被插入到airflow_dag_schedule表,但有{len(valid_tables)}个有效表需要处理" logger.error(error_msg) raise Exception(error_msg) # 7. 生成执行计划数据 resource_tasks = [] model_tasks = [] for table in valid_tables: if table.get('target_table_label') == 'DataResource': resource_tasks.append({ "source_table": table.get('source_table'), "target_table": table['target_table'], "target_table_label": "DataResource", "script_name": table.get('script_name'), "script_exec_mode": table.get('script_exec_mode', 'append') }) elif table.get('target_table_label') == 'DataModel': model_tasks.append({ "source_table": table.get('source_table'), "target_table": table['target_table'], "target_table_label": "DataModel", "script_name": table.get('script_name'), "script_exec_mode": table.get('script_exec_mode', 'append') }) # 获取依赖关系 model_table_names = [t['target_table'] for t in model_tasks] dependencies = {} driver = get_neo4j_driver() try: with driver.session() as session: for table_name in model_table_names: query = """ MATCH (source:DataModel {en_name: $table_name})-[:DERIVED_FROM]->(target) RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels """ result = session.run(query, table_name=table_name) deps = [] for record in result: target = record.get("target") target_labels = record.get("target_labels", []) if target: table_type = next((label for label in target_labels if label in ["DataModel", "DataResource"]), None) deps.append({ "table_name": target, "table_type": table_type }) dependencies[table_name] = deps finally: driver.close() # 创建执行计划 execution_plan = { "exec_date": exec_date, "resource_tasks": resource_tasks, "model_tasks": model_tasks, "dependencies": dependencies } # 将执行计划保存到XCom kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(execution_plan, default=json_serial)) logger.info(f"准备了执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务") return inserted_count def check_execution_plan_file(**kwargs): """ 检查执行计划文件是否存在且有效 返回False将阻止所有下游任务执行 """ logger.info("检查执行计划文件是否存在且有效") plan_path = os.path.join(os.path.dirname(__file__), 'last_execution_plan.json') ready_path = f"{plan_path}.ready" # 检查文件是否存在 if not os.path.exists(plan_path): logger.error(f"执行计划文件不存在: {plan_path}") return False # 检查ready标记是否存在 if not os.path.exists(ready_path): logger.error(f"执行计划ready标记文件不存在: {ready_path}") return False # 检查文件是否可读且内容有效 try: with open(plan_path, 'r') as f: data = json.load(f) # 检查必要字段 if "exec_date" not in data: logger.error("执行计划缺少exec_date字段") return False if not isinstance(data.get("resource_tasks", []), list): logger.error("执行计划的resource_tasks字段无效") return False if not isinstance(data.get("model_tasks", []), list): logger.error("执行计划的model_tasks字段无效") return False # 检查是否有任务数据 resource_tasks = data.get("resource_tasks", []) model_tasks = data.get("model_tasks", []) if not resource_tasks and not model_tasks: logger.warning("执行计划不包含任何任务,但文件格式有效") # 注意:即使没有任务,我们仍然允许流程继续 logger.info(f"执行计划文件验证成功: 包含 {len(resource_tasks)} 个资源任务和 {len(model_tasks)} 个模型任务") return True except json.JSONDecodeError as je: logger.error(f"执行计划文件不是有效的JSON: {str(je)}") return False except Exception as e: logger.error(f"检查执行计划文件时出错: {str(e)}") return False ############################################# # 第二阶段: 数据处理阶段(Data Processing Phase)的函数 ############################################# def get_latest_date(): """获取数据库中包含记录的最近日期""" conn = get_pg_conn() cursor = conn.cursor() try: cursor.execute(""" SELECT DISTINCT exec_date FROM airflow_dag_schedule ORDER BY exec_date DESC LIMIT 1 """) result = cursor.fetchone() if result: latest_date = result[0] logger.info(f"找到最近的包含记录的日期: {latest_date}") return latest_date else: logger.warning("未找到包含记录的日期,将使用当前日期") return get_today_date() except Exception as e: logger.error(f"查找最近日期时出错: {str(e)}") return get_today_date() finally: cursor.close() conn.close() def get_all_tasks(exec_date): """ 获取所有需要执行的任务(DataResource和DataModel) 直接从执行计划获取任务信息,不再查询数据库 """ # 从数据库获取执行计划 execution_plan = get_execution_plan_from_db(exec_date) if not execution_plan: logger.warning(f"未找到执行日期 {exec_date} 的执行计划") return [], [] # 提取资源任务和模型任务 resource_tasks = execution_plan.get("resource_tasks", []) model_tasks = execution_plan.get("model_tasks", []) logger.info(f"获取到 {len(resource_tasks)} 个资源任务和 {len(model_tasks)} 个模型任务") return resource_tasks, model_tasks def get_table_dependencies(table_names): """获取表之间的依赖关系""" driver = get_neo4j_driver() dependency_dict = {name: [] for name in table_names} try: with driver.session() as session: # 获取所有模型表之间的依赖关系 query = """ MATCH (source:DataModel)-[:DERIVED_FROM]->(target) WHERE source.en_name IN $table_names RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels """ result = session.run(query, table_names=table_names) for record in result: source = record.get("source") target = record.get("target") target_labels = record.get("target_labels", []) if source and target: # 将目标表添加到源表的依赖列表中 dependency_dict[source].append({ "table_name": target, "table_type": next((label for label in target_labels if label in ["DataModel", "DataResource"]), None) }) logger.debug(f"依赖关系: {source} 依赖于 {target}") except Exception as e: logger.error(f"从Neo4j获取依赖关系时出错: {str(e)}") finally: driver.close() return dependency_dict def create_execution_plan(**kwargs): """准备执行计划的函数,使用从准备阶段传递的数据""" try: # 从XCom获取执行计划 execution_plan = kwargs['ti'].xcom_pull(task_ids='prepare_phase.prepare_dag_schedule', key='execution_plan') # 如果找不到执行计划,则从数据库获取 if not execution_plan: # 获取执行日期 exec_date = get_latest_date() logger.info(f"未找到执行计划,从数据库获取。使用执行日期: {exec_date}") # 获取所有任务 resource_tasks, model_tasks = get_all_tasks(exec_date) if not resource_tasks and not model_tasks: logger.warning(f"执行日期 {exec_date} 没有找到任务") return 0 # 为所有模型表获取依赖关系 model_table_names = [task["target_table"] for task in model_tasks] dependencies = get_table_dependencies(model_table_names) # 创建执行计划 new_execution_plan = { "exec_date": exec_date, "resource_tasks": resource_tasks, "model_tasks": model_tasks, "dependencies": dependencies } # 保存执行计划到XCom kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(new_execution_plan, default=json_serial)) logger.info(f"创建新的执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务") return json.dumps(new_execution_plan, default=json_serial) logger.info(f"成功获取执行计划") return execution_plan except Exception as e: logger.error(f"创建执行计划时出错: {str(e)}") # 返回空执行计划 empty_plan = { "exec_date": get_today_date(), "resource_tasks": [], "model_tasks": [], "dependencies": {} } return json.dumps(empty_plan, default=json_serial) def process_resource(target_table, script_name, script_exec_mode, exec_date): """处理单个资源表""" task_id = f"resource_{target_table}" logger.info(f"===== 开始执行 {task_id} =====") logger.info(f"执行资源表 {target_table} 的脚本 {script_name}") # 检查exec_date是否是JSON字符串 if isinstance(exec_date, str) and exec_date.startswith('{'): try: # 尝试解析JSON字符串 exec_date_data = json.loads(exec_date) exec_date = exec_date_data.get("exec_date") logger.info(f"从JSON中提取执行日期: {exec_date}") except Exception as e: logger.error(f"解析exec_date JSON时出错: {str(e)}") # 确保exec_date是字符串 if not isinstance(exec_date, str): exec_date = str(exec_date) logger.info(f"将exec_date转换为字符串: {exec_date}") try: # 使用新的函数执行脚本,不依赖数据库 logger.info(f"调用execute_python_script: target_table={target_table}, script_name={script_name}") result = execute_python_script( target_table=target_table, script_name=script_name, script_exec_mode=script_exec_mode, exec_date=exec_date ) logger.info(f"资源表 {target_table} 处理完成,结果: {result}") return result except Exception as e: logger.error(f"处理资源表 {target_table} 时出错: {str(e)}") import traceback logger.error(traceback.format_exc()) logger.info(f"===== 结束执行 {task_id} (失败) =====") return False finally: logger.info(f"===== 结束执行 {task_id} =====") def process_model(target_table, script_name, script_exec_mode, exec_date): """处理单个模型表""" task_id = f"model_{target_table}" logger.info(f"===== 开始执行 {task_id} =====") logger.info(f"执行模型表 {target_table} 的脚本 {script_name}") # 检查exec_date是否是JSON字符串 if isinstance(exec_date, str) and exec_date.startswith('{'): try: # 尝试解析JSON字符串 exec_date_data = json.loads(exec_date) exec_date = exec_date_data.get("exec_date") logger.info(f"从JSON中提取执行日期: {exec_date}") except Exception as e: logger.error(f"解析exec_date JSON时出错: {str(e)}") # 确保exec_date是字符串 if not isinstance(exec_date, str): exec_date = str(exec_date) logger.info(f"将exec_date转换为字符串: {exec_date}") try: # 使用新的函数执行脚本,不依赖数据库 logger.info(f"调用execute_python_script: target_table={target_table}, script_name={script_name}") result = execute_python_script( target_table=target_table, script_name=script_name, script_exec_mode=script_exec_mode, exec_date=exec_date ) logger.info(f"模型表 {target_table} 处理完成,结果: {result}") return result except Exception as e: logger.error(f"处理模型表 {target_table} 时出错: {str(e)}") import traceback logger.error(traceback.format_exc()) logger.info(f"===== 结束执行 {task_id} (失败) =====") return False finally: logger.info(f"===== 结束执行 {task_id} =====") ############################################# # 第三阶段: 汇总阶段(Summary Phase)的函数 ############################################# def get_execution_stats(exec_date): """ 获取执行统计信息,使用Airflow的API获取执行状态 不再依赖airflow_dag_schedule表 """ from airflow.models import DagRun, TaskInstance from airflow.utils.state import State logger.info(f"获取执行日期 {exec_date} 的执行统计信息") # 当前DAG ID dag_id = "dag_dataops_pipeline_data_scheduler" try: # 查找对应的DAG运行 dag_runs = DagRun.find(dag_id=dag_id, execution_date=exec_date) if not dag_runs: logger.warning(f"未找到DAG {dag_id} 在 {exec_date} 的运行记录") return { "exec_date": exec_date, "total_tasks": 0, "type_counts": {}, "success_count": 0, "fail_count": 0, "pending_count": 0, "success_rate": 0, "avg_duration": None, "min_duration": None, "max_duration": None, "failed_tasks": [] } dag_run = dag_runs[0] # 获取所有任务实例 task_instances = TaskInstance.find(dag_id=dag_id, execution_date=dag_run.execution_date) # 统计任务状态 total_tasks = len(task_instances) success_count = len([ti for ti in task_instances if ti.state == State.SUCCESS]) fail_count = len([ti for ti in task_instances if ti.state in (State.FAILED, State.UPSTREAM_FAILED)]) pending_count = total_tasks - success_count - fail_count # 计算成功率 success_rate = (success_count / total_tasks * 100) if total_tasks > 0 else 0 # 计算执行时间 durations = [] for ti in task_instances: if ti.start_date and ti.end_date: duration = (ti.end_date - ti.start_date).total_seconds() durations.append(duration) avg_duration = sum(durations) / len(durations) if durations else None min_duration = min(durations) if durations else None max_duration = max(durations) if durations else None # 分类统计信息 type_counts = { "resource": len([ti for ti in task_instances if ti.task_id.startswith("resource_")]), "model": len([ti for ti in task_instances if ti.task_id.startswith("model_")]) } # 获取失败任务详情 failed_tasks = [] for ti in task_instances: if ti.state in (State.FAILED, State.UPSTREAM_FAILED): task_dict = { "task_id": ti.task_id, "state": ti.state, } if ti.start_date and ti.end_date: task_dict["exec_duration"] = (ti.end_date - ti.start_date).total_seconds() failed_tasks.append(task_dict) # 汇总统计信息 stats = { "exec_date": exec_date, "total_tasks": total_tasks, "type_counts": type_counts, "success_count": success_count, "fail_count": fail_count, "pending_count": pending_count, "success_rate": success_rate, "avg_duration": avg_duration, "min_duration": min_duration, "max_duration": max_duration, "failed_tasks": failed_tasks } return stats except Exception as e: logger.error(f"获取执行统计信息时出错: {str(e)}") import traceback logger.error(traceback.format_exc()) return {} def update_missing_results(exec_date): """ 更新缺失的执行结果信息 此函数已不再操作数据库,仅返回0表示无需更新 """ logger.info(f"模拟更新缺失的执行结果信息 (已移除数据库操作)") return 0 def generate_execution_report(exec_date, stats): """生成执行报告""" # 构建报告 report = [] report.append(f"========== 数据运维系统执行报告 ==========") report.append(f"执行日期: {exec_date}") report.append(f"总任务数: {stats['total_tasks']}") # 任务类型分布 report.append("\n--- 任务类型分布 ---") for label, count in stats.get('type_counts', {}).items(): report.append(f"{label} 任务: {count} 个") # 执行结果统计 report.append("\n--- 执行结果统计 ---") report.append(f"成功任务: {stats.get('success_count', 0)} 个") report.append(f"失败任务: {stats.get('fail_count', 0)} 个") report.append(f"未执行任务: {stats.get('pending_count', 0)} 个") report.append(f"成功率: {stats.get('success_rate', 0):.2f}%") # 执行时间统计 report.append("\n--- 执行时间统计 (秒) ---") avg_duration = stats.get('avg_duration') min_duration = stats.get('min_duration') max_duration = stats.get('max_duration') report.append(f"平均执行时间: {avg_duration:.2f}" if avg_duration is not None else "平均执行时间: N/A") report.append(f"最短执行时间: {min_duration:.2f}" if min_duration is not None else "最短执行时间: N/A") report.append(f"最长执行时间: {max_duration:.2f}" if max_duration is not None else "最长执行时间: N/A") # 失败任务详情 failed_tasks = stats.get('failed_tasks', []) if failed_tasks: report.append("\n--- 失败任务详情 ---") for i, task in enumerate(failed_tasks, 1): report.append(f"{i}. 任务ID: {task['task_id']}") report.append(f" 状态: {task['state']}") exec_duration = task.get('exec_duration') if exec_duration is not None: report.append(f" 执行时间: {exec_duration:.2f} 秒") else: report.append(" 执行时间: N/A") report.append("\n========== 报告结束 ==========") # 将报告转换为字符串 report_str = "\n".join(report) # 记录到日志 logger.info("\n" + report_str) return report_str def summarize_execution(**kwargs): """简化的汇总执行情况函数,只判断整个作业是否成功""" try: exec_date = kwargs.get('ds') or get_today_date() logger.info(f"开始汇总执行日期 {exec_date} 的执行情况") # 获取任务实例对象 task_instance = kwargs.get('ti') dag_id = task_instance.dag_id # 获取DAG运行状态信息 from airflow.models import DagRun from airflow.utils.state import State # 查找对应的DAG运行 dag_runs = DagRun.find(dag_id=dag_id, execution_date=task_instance.execution_date) if not dag_runs or len(dag_runs) == 0: logger.warning(f"未找到DAG {dag_id} 在执行日期 {exec_date} 的运行记录") state = "UNKNOWN" success = False else: # 获取状态 dag_run = dag_runs[0] # 取第一个匹配的DAG运行 state = dag_run.state logger.info(f"DAG {dag_id} 的状态为: {state}") # 判断是否成功 success = (state == State.SUCCESS) # 获取更详细的执行统计信息 stats = get_execution_stats(exec_date) # 创建简单的报告 if success: report = f"DAG {dag_id} 在 {exec_date} 的执行成功完成。" if stats: report += f" 总共有 {stats.get('total_tasks', 0)} 个任务," \ f"其中成功 {stats.get('success_count', 0)} 个," \ f"失败 {stats.get('fail_count', 0)} 个。" else: report = f"DAG {dag_id} 在 {exec_date} 的执行未成功完成,状态为: {state}。" if stats and stats.get('failed_tasks'): report += f" 有 {len(stats.get('failed_tasks', []))} 个任务失败。" # 记录执行结果 logger.info(report) # 如果 stats 为空,创建一个简单的状态信息 if not stats: stats = { "exec_date": exec_date, "success": success, "dag_id": dag_id, "dag_run_state": state } # 添加success状态到stats stats["success"] = success # 将结果推送到XCom task_instance.xcom_push(key='execution_stats', value=json.dumps(stats, cls=DecimalEncoder)) task_instance.xcom_push(key='execution_report', value=report) task_instance.xcom_push(key='execution_success', value=success) # 生成简化的执行报告 simple_report = generate_execution_report(exec_date, stats) return simple_report except Exception as e: logger.error(f"汇总执行情况时出现未处理的错误: {str(e)}") import traceback logger.error(traceback.format_exc()) # 返回一个简单的错误报告 return f"执行汇总时出现错误: {str(e)}" # 添加新函数,用于从数据库获取执行计划 def get_execution_plan_from_db(ds): """ 从数据库airflow_exec_plans表中获取执行计划 参数: ds (str): 执行日期,格式为'YYYY-MM-DD' 返回: dict: 执行计划字典,如果找不到则返回None """ logger.info(f"尝试从数据库获取执行日期 {ds} 的执行计划") conn = get_pg_conn() cursor = conn.cursor() execution_plan = None try: # 查询条件a: 当前日期=表的ds,如果有多条记录,取insert_time最大的一条 cursor.execute(""" SELECT plan, run_id, insert_time FROM airflow_exec_plans WHERE dag_id = 'dag_dataops_pipeline_prepare_scheduler' AND ds = %s ORDER BY insert_time DESC LIMIT 1 """, (ds,)) result = cursor.fetchone() if result: # 获取计划、run_id和insert_time plan_json, run_id, insert_time = result logger.info(f"找到当前日期 ds={ds} 的执行计划记录,run_id: {run_id}, insert_time: {insert_time}") # 处理plan_json可能已经是dict的情况 if isinstance(plan_json, dict): execution_plan = plan_json else: execution_plan = json.loads(plan_json) return execution_plan # 查询条件b: 找不到当前日期的记录,查找ds<当前ds的最新记录 logger.info(f"未找到当前日期 ds={ds} 的执行计划记录,尝试查找历史记录") cursor.execute(""" SELECT plan, run_id, insert_time, ds FROM airflow_exec_plans WHERE dag_id = 'dag_dataops_pipeline_prepare_scheduler' AND ds < %s ORDER BY ds DESC, insert_time DESC LIMIT 1 """, (ds,)) result = cursor.fetchone() if result: # 获取计划、run_id、insert_time和ds plan_json, run_id, insert_time, plan_ds = result logger.info(f"找到历史执行计划记录,ds: {plan_ds}, run_id: {run_id}, insert_time: {insert_time}") # 处理plan_json可能已经是dict的情况 if isinstance(plan_json, dict): execution_plan = plan_json else: execution_plan = json.loads(plan_json) return execution_plan # 找不到任何执行计划记录 logger.error(f"在数据库中未找到任何执行计划记录,当前DAG ds={ds}") return None except Exception as e: logger.error(f"从数据库获取执行计划时出错: {str(e)}") import traceback logger.error(traceback.format_exc()) return None finally: cursor.close() conn.close() # 创建DAG with DAG( "dag_dataops_pipeline_data_scheduler", start_date=datetime(2024, 1, 1), schedule_interval="@daily", catchup=False, default_args={ 'owner': 'airflow', 'depends_on_past': False, 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=5) }, # 添加DAG级别参数,确保任务运行时有正确的环境 params={ "scripts_path": SCRIPTS_BASE_PATH, "airflow_base_path": os.path.dirname(os.path.dirname(__file__)) } ) as dag: ############################################# # 阶段1: 准备阶段(Prepare Phase) ############################################# with TaskGroup("prepare_phase") as prepare_group: # 任务开始标记 start_preparation = EmptyOperator( task_id="start_preparation" ) # 准备调度任务 prepare_task = PythonOperator( task_id="prepare_dag_schedule", python_callable=prepare_dag_schedule, provide_context=True ) # 验证执行计划有效性 check_plan = ShortCircuitOperator( task_id="check_execution_plan_file", python_callable=check_execution_plan_file, provide_context=True ) # 创建执行计划 create_plan = PythonOperator( task_id="create_execution_plan", python_callable=create_execution_plan, provide_context=True ) # 准备完成标记 preparation_completed = EmptyOperator( task_id="preparation_completed" ) # 设置任务依赖 start_preparation >> prepare_task >> check_plan >> create_plan >> preparation_completed ############################################# # 阶段2: 数据处理阶段(Data Processing Phase) ############################################# with TaskGroup("data_processing_phase") as data_group: # 数据处理开始任务 start_processing = EmptyOperator( task_id="start_processing" ) # 数据处理完成标记 processing_completed = EmptyOperator( task_id="processing_completed", trigger_rule="none_failed_min_one_success" # 只要有一个任务成功且没有失败的任务就标记为完成 ) # 设置依赖 start_processing >> processing_completed ############################################# # 阶段3: 汇总阶段(Summary Phase) ############################################# with TaskGroup("summary_phase") as summary_group: # 汇总执行情况 summarize_task = PythonOperator( task_id="summarize_execution", python_callable=summarize_execution, provide_context=True ) # 总结完成标记 summary_completed = EmptyOperator( task_id="summary_completed" ) # 设置任务依赖 summarize_task >> summary_completed # 设置三个阶段之间的依赖关系 prepare_group >> data_group >> summary_group # 尝试从数据库获取执行计划 try: # 获取当前DAG的执行日期 exec_date = get_today_date() # 使用当天日期作为默认值 logger.info(f"当前DAG执行日期 ds={exec_date},尝试从数据库获取执行计划") # 从数据库获取执行计划 execution_plan = get_execution_plan_from_db(exec_date) # 检查是否成功获取到执行计划 if execution_plan is None: error_msg = f"无法从数据库获取有效的执行计划,当前DAG ds={exec_date}" logger.error(error_msg) # 使用全局变量而不是异常来强制DAG失败 raise ValueError(error_msg) # 如果获取到了执行计划,处理它 logger.info(f"成功从数据库获取执行计划") # 提取信息 exec_date = execution_plan.get("exec_date", exec_date) resource_tasks = execution_plan.get("resource_tasks", []) model_tasks = execution_plan.get("model_tasks", []) dependencies = execution_plan.get("dependencies", {}) logger.info(f"执行计划: exec_date={exec_date}, resource_tasks数量={len(resource_tasks)}, model_tasks数量={len(model_tasks)}") # 如果执行计划为空(没有任务),也应该失败 if not resource_tasks and not model_tasks: error_msg = f"执行计划中没有任何任务,当前DAG ds={exec_date}" logger.error(error_msg) raise ValueError(error_msg) # 动态创建处理任务 task_dict = {} # 1. 创建资源表任务 for task_info in resource_tasks: table_name = task_info["target_table"] script_name = task_info["script_name"] exec_mode = task_info.get("script_exec_mode", "append") # 创建安全的任务ID safe_table_name = table_name.replace(".", "_").replace("-", "_") # 确保所有任务都是data_processing_phase的一部分 with data_group: resource_task = PythonOperator( task_id=f"resource_{safe_table_name}", python_callable=process_resource, op_kwargs={ "target_table": table_name, "script_name": script_name, "script_exec_mode": exec_mode, # 确保使用字符串而不是可能是默认(非字符串)格式的执行日期 # 这样 execute_with_monitoring 函数才能正确更新数据库 "exec_date": str(exec_date) }, retries=TASK_RETRY_CONFIG["retries"], retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"]) ) # 将任务添加到字典 task_dict[table_name] = resource_task # 设置与start_processing的依赖 start_processing >> resource_task # 创建有向图,用于检测模型表之间的依赖关系 G = nx.DiGraph() # 将所有模型表添加为节点 for task_info in model_tasks: table_name = task_info["target_table"] G.add_node(table_name) # 添加模型表之间的依赖边 for source, deps in dependencies.items(): for dep in deps: if dep.get("table_type") == "DataModel" and dep.get("table_name") in G.nodes(): G.add_edge(dep.get("table_name"), source) # 依赖方向:依赖项 -> 目标 # 检测循环依赖并处理 try: cycles = list(nx.simple_cycles(G)) if cycles: logger.warning(f"检测到循环依赖: {cycles}") for cycle in cycles: G.remove_edge(cycle[-1], cycle[0]) logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖") except Exception as e: logger.error(f"检测循环依赖时出错: {str(e)}") # 生成拓扑排序,确定执行顺序 execution_order = [] try: execution_order = list(nx.topological_sort(G)) except Exception as e: logger.error(f"生成拓扑排序失败: {str(e)}") execution_order = [task_info["target_table"] for task_info in model_tasks] # 2. 按拓扑排序顺序创建模型表任务 for table_name in execution_order: task_info = next((t for t in model_tasks if t["target_table"] == table_name), None) if not task_info: continue script_name = task_info["script_name"] exec_mode = task_info.get("script_exec_mode", "append") # 创建安全的任务ID safe_table_name = table_name.replace(".", "_").replace("-", "_") # 确保所有任务都是data_processing_phase的一部分 with data_group: model_task = PythonOperator( task_id=f"model_{safe_table_name}", python_callable=process_model, op_kwargs={ "target_table": table_name, "script_name": script_name, "script_exec_mode": exec_mode, # 确保使用字符串而不是可能是默认(非字符串)格式的执行日期 # 这样 execute_with_monitoring 函数才能正确更新数据库 "exec_date": str(exec_date) }, retries=TASK_RETRY_CONFIG["retries"], retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"]) ) # 将任务添加到字典 task_dict[table_name] = model_task # 设置依赖关系 deps = dependencies.get(table_name, []) has_dependency = False # 处理模型表之间的依赖 for dep in deps: dep_table = dep.get("table_name") dep_type = dep.get("table_type") if dep_table in task_dict: task_dict[dep_table] >> model_task has_dependency = True logger.info(f"设置依赖: {dep_table} >> {table_name}") # 如果没有依赖,则依赖于start_processing和资源表任务 if not has_dependency: # 从start_processing任务直接连接 start_processing >> model_task # 同时从所有资源表任务连接 resource_count = 0 for resource_table in resource_tasks: if resource_count >= 5: # 最多设置5个依赖 break resource_name = resource_table["target_table"] if resource_name in task_dict: task_dict[resource_name] >> model_task resource_count += 1 # 找出所有终端任务(没有下游依赖的任务) terminal_tasks = [] # 检查所有模型表任务 for table_name in execution_order: # 检查是否有下游任务 has_downstream = False for source, deps in dependencies.items(): if source == table_name: # 跳过自身 continue for dep in deps: if dep.get("table_name") == table_name: has_downstream = True break if has_downstream: break # 如果没有下游任务,添加到终端任务列表 if not has_downstream and table_name in task_dict: terminal_tasks.append(table_name) # 如果没有模型表任务,将所有资源表任务视为终端任务 if not model_tasks and resource_tasks: terminal_tasks = [task["target_table"] for task in resource_tasks] logger.info(f"没有模型表任务,将所有资源表任务视为终端任务: {terminal_tasks}") # 如果既没有模型表任务也没有资源表任务,已有默认依赖链 if not terminal_tasks: logger.warning("未找到任何任务,使用默认依赖链") else: # 将所有终端任务连接到完成标记 for table_name in terminal_tasks: if table_name in task_dict: task_dict[table_name] >> processing_completed logger.info(f"设置终端任务: {table_name} >> processing_completed") except Exception as e: logger.error(f"加载执行计划时出错: {str(e)}") import traceback logger.error(traceback.format_exc()) logger.info(f"DAG dag_dataops_pipeline_data_scheduler 定义完成")