123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- import logging
- import sys
- from datetime import datetime, timedelta
- import pytz
- import re # 添加re模块以支持正则表达式
- # 配置日志记录器
- logging.basicConfig(
- level=logging.INFO,
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
- handlers=[
- logging.StreamHandler(sys.stdout)
- ]
- )
- logger = logging.getLogger("script_utils")
- def get_date_range(exec_date, frequency):
- """
- 根据执行日期和频率,计算开始日期和结束日期
-
- 参数:
- exec_date (str): 执行日期,格式为 YYYY-MM-DD
- frequency (str): 频率,可选值为 daily, weekly, monthly, quarterly, yearly
-
- 返回:
- tuple: (start_date, end_date) 格式为 YYYY-MM-DD 的字符串
- """
- logger.info(f"计算日期范围 - 执行日期: {exec_date}, 频率: {frequency}")
-
- # 将输入的日期转换为上海时区的datetime对象
- shanghai_tz = pytz.timezone('Asia/Shanghai')
-
- try:
- # 解析输入的exec_date
- if isinstance(exec_date, str):
- date_obj = datetime.strptime(exec_date, '%Y-%m-%d')
- elif isinstance(exec_date, datetime):
- date_obj = exec_date
- else:
- raise ValueError(f"不支持的exec_date类型: {type(exec_date)}")
-
- # 转换为上海时区
- date_obj = shanghai_tz.localize(date_obj)
- logger.info(f"上海时区的执行日期: {date_obj}")
-
- # 根据不同频率计算日期范围
- if frequency.lower() == 'daily':
- # 每日: start_date = exec_date, end_date = exec_date + 1 day
- start_date = date_obj.strftime('%Y-%m-%d')
- end_date = (date_obj + timedelta(days=1)).strftime('%Y-%m-%d')
-
- elif frequency.lower() == 'weekly':
- # 每周: start_date = 本周一, end_date = 下周一
- days_since_monday = date_obj.weekday() # 0=周一, 6=周日
- monday = date_obj - timedelta(days=days_since_monday)
- next_monday = monday + timedelta(days=7)
-
- start_date = monday.strftime('%Y-%m-%d')
- end_date = next_monday.strftime('%Y-%m-%d')
-
- elif frequency.lower() == 'monthly':
- # 每月: start_date = 本月第一天, end_date = 下月第一天
- first_day = date_obj.replace(day=1)
-
- # 计算下个月的第一天
- if first_day.month == 12:
- next_month_first_day = first_day.replace(year=first_day.year + 1, month=1)
- else:
- next_month_first_day = first_day.replace(month=first_day.month + 1)
-
- start_date = first_day.strftime('%Y-%m-%d')
- end_date = next_month_first_day.strftime('%Y-%m-%d')
-
- elif frequency.lower() == 'quarterly':
- # 每季度: start_date = 本季度第一天, end_date = 下季度第一天
- quarter = (date_obj.month - 1) // 3 + 1 # 1-4季度
- first_month_of_quarter = (quarter - 1) * 3 + 1 # 季度的第一个月
-
- quarter_first_day = date_obj.replace(month=first_month_of_quarter, day=1)
-
- # 计算下个季度的第一天
- if quarter == 4:
- next_quarter_first_day = quarter_first_day.replace(year=quarter_first_day.year + 1, month=1)
- else:
- next_quarter_first_day = quarter_first_day.replace(month=first_month_of_quarter + 3)
-
- start_date = quarter_first_day.strftime('%Y-%m-%d')
- end_date = next_quarter_first_day.strftime('%Y-%m-%d')
-
- elif frequency.lower() == 'yearly':
- # 每年: start_date = 本年第一天, end_date = 下年第一天
- year_first_day = date_obj.replace(month=1, day=1)
- next_year_first_day = date_obj.replace(year=date_obj.year + 1, month=1, day=1)
-
- start_date = year_first_day.strftime('%Y-%m-%d')
- end_date = next_year_first_day.strftime('%Y-%m-%d')
-
- else:
- logger.error(f"不支持的频率: {frequency}")
- raise ValueError(f"不支持的频率: {frequency}")
-
- logger.info(f"计算结果 - 开始日期: {start_date}, 结束日期: {end_date}")
- return start_date, end_date
-
- except Exception as e:
- logger.error(f"计算日期范围时出错: {str(e)}", exc_info=True)
- raise
- import re
- from typing import Dict, List, Optional, Set
- def extract_source_fields_linked_to_template(sql: str, jinja_vars: List[str]) -> Set[str]:
- """
- 从 SQL 中提取和 jinja 模板变量绑定的源字段(支持各种形式)
- """
- fields = set()
- sql = re.sub(r"\s+", " ", sql)
- for var in jinja_vars:
- # 普通比较、函数包裹
- pattern = re.compile(
- r"""
- (?P<field>
- (?:\w+\s*\(\s*)? # 可选函数开始(如 DATE(
- [\w\.]+ # 字段名
- (?:\s+AS\s+\w+)? # 可选 CAST 形式
- \)? # 可选右括号
- )
- \s*(=|<|>|<=|>=)\s*['"]?\{\{\s*""" + var + r"""\s*\}\}['"]?
- """, re.IGNORECASE | re.VERBOSE
- )
- fields.update(match.group("field").strip() for match in pattern.finditer(sql))
- # BETWEEN '{{ start_date }}' AND '{{ end_date }}'
- if var == "start_date":
- pattern_between = re.compile(
- r"""(?P<field>
- (?:\w+\s*\(\s*)?[\w\.]+(?:\s+AS\s+\w+)?\)? # 字段(函数包裹可选)
- )
- \s+BETWEEN\s+['"]?\{\{\s*start_date\s*\}\}['"]?\s+AND\s+['"]?\{\{\s*end_date\s*\}\}
- """, re.IGNORECASE | re.VERBOSE
- )
- fields.update(match.group("field").strip() for match in pattern_between.finditer(sql))
- return {extract_core_field(f) for f in fields}
- def extract_core_field(expr: str) -> str:
- """
- 清洗函数包裹的字段表达式:DATE(sd.sale_date) -> sd.sale_date, CAST(...) -> ...
- """
- expr = re.sub(r"CAST\s*\(\s*([\w\.]+)\s+AS\s+\w+\s*\)", r"\1", expr, flags=re.IGNORECASE)
- expr = re.sub(r"\b\w+\s*\(\s*([\w\.]+)\s*\)", r"\1", expr)
- return expr.strip()
- def parse_select_aliases(sql: str) -> Dict[str, str]:
- """
- 提取 SELECT 中的字段别名映射:原字段 -> 目标别名
- """
- sql = re.sub(r"\s+", " ", sql)
- select_clause_match = re.search(r"SELECT\s+(.*?)\s+FROM", sql, re.IGNORECASE)
- if not select_clause_match:
- return {}
- select_clause = select_clause_match.group(1)
- mappings = {}
- for expr in select_clause.split(","):
- expr = expr.strip()
- alias_match = re.match(r"([\w\.]+)\s+AS\s+([\w]+)", expr, re.IGNORECASE)
- if alias_match:
- source, alias = alias_match.groups()
- mappings[source.strip()] = alias.strip()
- return mappings
- def find_target_date_field(sql: str, jinja_vars: List[str] = ["start_date", "end_date"]) -> Optional[str]:
- """
- 从 SQL 中找出与模板时间变量绑定的目标表字段(只返回一个)
- """
- source_fields = extract_source_fields_linked_to_template(sql, jinja_vars)
- alias_map = parse_select_aliases(sql)
- # 匹配 SELECT 中的映射字段
- for src_field in source_fields:
- if src_field in alias_map:
- return alias_map[src_field] # 源字段映射的目标字段
- # 若未通过 AS 映射,可能直接 SELECT sd.sale_date(裸字段)
- for src_field in source_fields:
- if '.' not in src_field:
- return src_field # 裸字段直接作为目标字段名
- return None
- def generate_delete_sql(sql_content, target_table=None):
- """
- 根据SQL脚本内容生成用于清理数据的DELETE语句
-
- 参数:
- sql_content (str): 原始SQL脚本内容
- target_table (str, optional): 目标表名,如果SQL脚本中无法解析出表名时使用
-
- 返回:
- str: DELETE语句,用于清理数据
- """
- logger.info("生成清理SQL语句,实现ETL作业幂等性")
-
- # 如果提供了目标表名,直接使用
- if target_table:
- logger.info(f"使用提供的目标表名: {target_table}")
- delete_stmt = f"""DELETE FROM {target_table}
- WHERE summary_date >= '{{{{ start_date }}}}'
- AND summary_date < '{{{{ end_date }}}}';"""
- logger.info(f"生成的清理SQL: {delete_stmt}")
- return delete_stmt
-
- # 尝试从SQL内容中解析出目标表名
- try:
- # 简单解析,尝试找出INSERT语句的目标表
- # 匹配 INSERT INTO xxx 或 INSERT INTO "xxx" 或 INSERT INTO `xxx` 或 INSERT INTO [xxx]
- insert_match = re.search(r'INSERT\s+INTO\s+(?:["\[`])?([a-zA-Z0-9_\.]+)(?:["\]`])?', sql_content, re.IGNORECASE)
-
- if insert_match:
- table_name = insert_match.group(1)
- logger.info(f"从SQL中解析出目标表名: {table_name}")
-
- delete_stmt = f"""DELETE FROM {table_name}
- WHERE summary_date >= '{{{{ start_date }}}}'
- AND summary_date < '{{{{ end_date }}}}';"""
- logger.info(f"生成的清理SQL: {delete_stmt}")
- return delete_stmt
- else:
- logger.warning("无法从SQL中解析出目标表名,无法生成清理SQL")
- return None
-
- except Exception as e:
- logger.error(f"解析SQL生成清理语句时出错: {str(e)}", exc_info=True)
- return None
|