| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175 | 
							- # dag_dataops_unified_scheduler.py
 
- # 合并了prepare, data和summary三个DAG的功能
 
- from airflow import DAG
 
- from airflow.operators.python import PythonOperator
 
- from airflow.operators.empty import EmptyOperator
 
- from airflow.utils.task_group import TaskGroup
 
- from datetime import datetime, timedelta, date
 
- import logging
 
- import networkx as nx
 
- import json
 
- from decimal import Decimal
 
- from common import (
 
-     get_pg_conn, 
 
-     get_neo4j_driver,
 
-     execute_with_monitoring,
 
-     get_today_date
 
- )
 
- from config import TASK_RETRY_CONFIG, PG_CONFIG, NEO4J_CONFIG
 
- # 创建日志记录器
 
- logger = logging.getLogger(__name__)
 
- # 添加日期序列化器
 
- def json_serial(obj):
 
-     """将日期对象序列化为ISO格式字符串的JSON序列化器"""
 
-     if isinstance(obj, (datetime, date)):
 
-         return obj.isoformat()
 
-     raise TypeError(f"类型 {type(obj)} 不能被序列化为JSON")
 
- # 添加自定义JSON编码器解决Decimal序列化问题
 
- class DecimalEncoder(json.JSONEncoder):
 
-     def default(self, obj):
 
-         if isinstance(obj, Decimal):
 
-             return float(obj)
 
-         # 处理日期类型
 
-         elif isinstance(obj, (datetime, date)):
 
-             return obj.isoformat()
 
-         # 让父类处理其他类型
 
-         return super(DecimalEncoder, self).default(obj)
 
- #############################################
 
- # 第一阶段: 准备阶段(Prepare Phase)的函数
 
- #############################################
 
- def get_enabled_tables():
 
-     """获取所有启用的表"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     try:
 
-         cursor.execute("""
 
-             SELECT owner_id, table_name 
 
-             FROM schedule_status 
 
-             WHERE schedule_is_enabled = TRUE
 
-         """)
 
-         result = cursor.fetchall()
 
-         return [row[1] for row in result]  # 只返回表名
 
-     except Exception as e:
 
-         logger.error(f"获取启用表失败: {str(e)}")
 
-         return []
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def check_table_directly_subscribed(table_name):
 
-     """检查表是否在schedule_status表中直接订阅"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     try:
 
-         cursor.execute("""
 
-             SELECT schedule_is_enabled
 
-             FROM schedule_status 
 
-             WHERE table_name = %s
 
-         """, (table_name,))
 
-         result = cursor.fetchone()
 
-         return result and result[0] is True
 
-     except Exception as e:
 
-         logger.error(f"检查表订阅状态失败: {str(e)}")
 
-         return False
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def get_table_info_from_neo4j(table_name):
 
-     """从Neo4j获取表的详细信息"""
 
-     driver = get_neo4j_driver()
 
-      # 检查表是否直接订阅
 
-     is_directly_schedule = check_table_directly_subscribed(table_name)
 
-     table_info = {
 
-         'target_table': table_name,
 
-         'is_directly_schedule': is_directly_schedule,  # 初始值设为True,从schedule_status表获取
 
-     }
 
-     
 
-     try:
 
-         with driver.session() as session:
 
-             # 查询表标签和状态
 
-             query_table = """
 
-                 MATCH (t {en_name: $table_name})
 
-                 RETURN labels(t) AS labels, t.status AS status, t.frequency AS frequency
 
-             """
 
-             result = session.run(query_table, table_name=table_name)
 
-             record = result.single()
 
-             
 
-             if record:
 
-                 labels = record.get("labels", [])
 
-                 table_info['target_table_label'] = [label for label in labels if label in ["DataResource", "DataModel", "DataSource"]][0] if labels else None
 
-                 table_info['target_table_status'] = record.get("status", True)  # 默认为True
 
-                 table_info['default_update_frequency'] = record.get("frequency")
 
-                 
 
-                 # 根据标签类型查询关系和脚本信息
 
-                 if "DataResource" in labels:
 
-                     query_rel = """
 
-                         MATCH (target {en_name: $table_name})-[rel:ORIGINATES_FROM]->(source)
 
-                         RETURN source.en_name AS source_table, rel.script_name AS script_name,
 
-                                rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
 
-                     """
 
-                 elif "DataModel" in labels:
 
-                     query_rel = """
 
-                         MATCH (target {en_name: $table_name})-[rel:DERIVED_FROM]->(source)
 
-                         RETURN source.en_name AS source_table, rel.script_name AS script_name,
 
-                                rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
 
-                     """
 
-                 else:
 
-                     logger.warning(f"表 {table_name} 不是DataResource或DataModel类型")
 
-                     return table_info
 
-                 
 
-                 result = session.run(query_rel, table_name=table_name)
 
-                 record = result.single()
 
-                 
 
-                 if record:
 
-                     table_info['source_table'] = record.get("source_table")     
 
-                     # 检查script_name是否为空
 
-                     script_name = record.get("script_name")
 
-                     if not script_name:
 
-                         logger.warning(f"表 {table_name} 的关系中没有script_name属性,可能导致后续处理出错")
 
-                     table_info['script_name'] = script_name
 
-                     
 
-                     # 设置默认值,确保即使属性为空也有默认值
 
-                     table_info['script_type'] = record.get("script_type", "python")  # 默认为python
 
-                     table_info['script_exec_mode'] = record.get("script_exec_mode", "append")  # 默认为append
 
-                 else:
 
-                     logger.warning(f"未找到表 {table_name} 的关系信息")
 
-             else:
 
-                 logger.warning(f"在Neo4j中找不到表 {table_name} 的信息")
 
-     except Exception as e:
 
-         logger.error(f"获取表 {table_name} 的信息时出错: {str(e)}")
 
-     finally:
 
-         driver.close()
 
-     
 
-     return table_info
 
- def process_dependencies(tables_info):
 
-     """处理表间依赖关系,添加被动调度的表"""
 
-     # 存储所有表信息的字典
 
-     all_tables = {t['target_table']: t for t in tables_info}
 
-     driver = get_neo4j_driver()
 
-     
 
-     try:
 
-         with driver.session() as session:
 
-             for table_name, table_info in list(all_tables.items()):
 
-                 if table_info.get('target_table_label') == 'DataModel':
 
-                     # 查询其依赖表
 
-                     query = """
 
-                         MATCH (dm {en_name: $table_name})-[:DERIVED_FROM]->(dep)
 
-                         RETURN dep.en_name AS dep_name, labels(dep) AS dep_labels, 
 
-                                dep.status AS dep_status, dep.frequency AS dep_frequency
 
-                     """
 
-                     result = session.run(query, table_name=table_name)
 
-                     
 
-                     for record in result:
 
-                         dep_name = record.get("dep_name")
 
-                         dep_labels = record.get("dep_labels", [])
 
-                         dep_status = record.get("dep_status", True)
 
-                         dep_frequency = record.get("dep_frequency")
 
-                         
 
-                         # 处理未被直接调度的依赖表
 
-                         if dep_name and dep_name not in all_tables:
 
-                             logger.info(f"发现被动依赖表: {dep_name}, 标签: {dep_labels}")
 
-                             
 
-                             # 获取依赖表详细信息
 
-                             dep_info = get_table_info_from_neo4j(dep_name)
 
-                             dep_info['is_directly_schedule'] = False
 
-                             
 
-                             # 处理调度频率继承
 
-                             if not dep_info.get('default_update_frequency'):
 
-                                 dep_info['default_update_frequency'] = table_info.get('default_update_frequency')
 
-                             
 
-                             all_tables[dep_name] = dep_info
 
-     except Exception as e:
 
-         logger.error(f"处理依赖关系时出错: {str(e)}")
 
-     finally:
 
-         driver.close()
 
-     
 
-     return list(all_tables.values())
 
- def filter_invalid_tables(tables_info):
 
-     """过滤无效表及其依赖,使用NetworkX构建依赖图"""
 
-     # 构建表名到索引的映射
 
-     table_dict = {t['target_table']: i for i, t in enumerate(tables_info)}
 
-     
 
-     # 找出无效表
 
-     invalid_tables = set()
 
-     for table in tables_info:
 
-         if table.get('target_table_status') is False:
 
-             invalid_tables.add(table['target_table'])
 
-             logger.info(f"表 {table['target_table']} 的状态为无效")
 
-     
 
-     # 构建依赖图
 
-     G = nx.DiGraph()
 
-     
 
-     # 添加所有节点
 
-     for table in tables_info:
 
-         G.add_node(table['target_table'])
 
-     
 
-     # 查询并添加依赖边
 
-     driver = get_neo4j_driver()
 
-     try:
 
-         with driver.session() as session:
 
-             for table in tables_info:
 
-                 if table.get('target_table_label') == 'DataModel':
 
-                     query = """
 
-                         MATCH (source {en_name: $table_name})-[:DERIVED_FROM]->(target)
 
-                         RETURN target.en_name AS target_name
 
-                     """
 
-                     result = session.run(query, table_name=table['target_table'])
 
-                     
 
-                     for record in result:
 
-                         target_name = record.get("target_name")
 
-                         if target_name and target_name in table_dict:
 
-                             # 添加从目标到源的边,表示目标依赖于源
 
-                             G.add_edge(table['target_table'], target_name)
 
-                             logger.debug(f"添加依赖边: {table['target_table']} -> {target_name}")
 
-     except Exception as e:
 
-         logger.error(f"构建依赖图时出错: {str(e)}")
 
-     finally:
 
-         driver.close()
 
-     
 
-     # 找出依赖于无效表的所有表
 
-     downstream_invalid = set()
 
-     for invalid_table in invalid_tables:
 
-         # 获取可从无效表到达的所有节点
 
-         try:
 
-             descendants = nx.descendants(G, invalid_table)
 
-             downstream_invalid.update(descendants)
 
-             logger.info(f"表 {invalid_table} 的下游无效表: {descendants}")
 
-         except Exception as e:
 
-             logger.error(f"处理表 {invalid_table} 的下游依赖时出错: {str(e)}")
 
-     
 
-     # 合并所有无效表
 
-     all_invalid = invalid_tables.union(downstream_invalid)
 
-     logger.info(f"总共 {len(all_invalid)} 个表被标记为无效: {all_invalid}")
 
-     
 
-     # 过滤出有效表
 
-     valid_tables = [t for t in tables_info if t['target_table'] not in all_invalid]
 
-     logger.info(f"过滤后保留 {len(valid_tables)} 个有效表")
 
-     
 
-     return valid_tables
 
- def write_to_airflow_dag_schedule(exec_date, tables_info):
 
-     """将表信息写入airflow_dag_schedule表"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     
 
-     try:
 
-         # 清理当日数据,避免重复
 
-         cursor.execute("""
 
-             DELETE FROM airflow_dag_schedule WHERE exec_date = %s
 
-         """, (exec_date,))
 
-         logger.info(f"已清理执行日期 {exec_date} 的现有数据")
 
-         
 
-         # 批量插入新数据
 
-         inserted_count = 0
 
-         for table in tables_info:
 
-             cursor.execute("""
 
-                 INSERT INTO airflow_dag_schedule (
 
-                     exec_date, source_table, target_table, target_table_label,
 
-                     target_table_status, is_directly_schedule, default_update_frequency,
 
-                     script_name, script_type, script_exec_mode
 
-                 ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
 
-             """, (
 
-                 exec_date,
 
-                 table.get('source_table'),
 
-                 table['target_table'],
 
-                 table.get('target_table_label'),
 
-                 table.get('target_table_status', True),
 
-                 table.get('is_directly_schedule', False),
 
-                 table.get('default_update_frequency'),
 
-                 table.get('script_name'),
 
-                 table.get('script_type', 'python'),
 
-                 table.get('script_exec_mode', 'append')
 
-             ))
 
-             inserted_count += 1
 
-         
 
-         conn.commit()
 
-         logger.info(f"成功插入 {inserted_count} 条记录到 airflow_dag_schedule 表")
 
-         return inserted_count
 
-     except Exception as e:
 
-         logger.error(f"写入 airflow_dag_schedule 表时出错: {str(e)}")
 
-         conn.rollback()
 
-         # 重新抛出异常,确保错误被正确传播
 
-         raise
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def prepare_dag_schedule(**kwargs):
 
-     """准备DAG调度任务的主函数"""
 
-     exec_date = kwargs.get('ds') or get_today_date()
 
-     logger.info(f"开始准备执行日期 {exec_date} 的统一调度任务")
 
-     
 
-     # 1. 获取启用的表
 
-     enabled_tables = get_enabled_tables()
 
-     logger.info(f"从schedule_status表获取到 {len(enabled_tables)} 个启用的表")
 
-     
 
-     if not enabled_tables:
 
-         logger.warning("没有找到启用的表,准备工作结束")
 
-         return 0
 
-     
 
-     # 2. 获取表的详细信息
 
-     tables_info = []
 
-     for table_name in enabled_tables:
 
-         table_info = get_table_info_from_neo4j(table_name)
 
-         if table_info:
 
-             tables_info.append(table_info)
 
-     
 
-     logger.info(f"成功获取 {len(tables_info)} 个表的详细信息")
 
-     
 
-     # 3. 处理依赖关系,添加被动调度的表
 
-     enriched_tables = process_dependencies(tables_info)
 
-     logger.info(f"处理依赖后,总共有 {len(enriched_tables)} 个表")
 
-     
 
-     # 4. 过滤无效表及其依赖
 
-     valid_tables = filter_invalid_tables(enriched_tables)
 
-     logger.info(f"过滤无效表后,最终有 {len(valid_tables)} 个有效表")
 
-     
 
-     # 5. 写入airflow_dag_schedule表
 
-     inserted_count = write_to_airflow_dag_schedule(exec_date, valid_tables)
 
-     
 
-     # 6. 检查插入操作是否成功,如果失败则抛出异常
 
-     if inserted_count == 0 and valid_tables:
 
-         error_msg = f"插入操作失败,无记录被插入到airflow_dag_schedule表,但有{len(valid_tables)}个有效表需要处理"
 
-         logger.error(error_msg)
 
-         raise Exception(error_msg)
 
-     
 
-     # 7. 生成执行计划数据
 
-     resource_tasks = []
 
-     model_tasks = []
 
-     
 
-     for table in valid_tables:
 
-         if table.get('target_table_label') == 'DataResource':
 
-             resource_tasks.append({
 
-                 "source_table": table.get('source_table'),
 
-                 "target_table": table['target_table'],
 
-                 "target_table_label": "DataResource",
 
-                 "script_name": table.get('script_name'),
 
-                 "script_exec_mode": table.get('script_exec_mode', 'append')
 
-             })
 
-         elif table.get('target_table_label') == 'DataModel':
 
-             model_tasks.append({
 
-                 "source_table": table.get('source_table'),
 
-                 "target_table": table['target_table'],
 
-                 "target_table_label": "DataModel",
 
-                 "script_name": table.get('script_name'),
 
-                 "script_exec_mode": table.get('script_exec_mode', 'append')
 
-             })
 
-     
 
-     # 获取依赖关系
 
-     model_table_names = [t['target_table'] for t in model_tasks]
 
-     dependencies = {}
 
-     
 
-     driver = get_neo4j_driver()
 
-     try:
 
-         with driver.session() as session:
 
-             for table_name in model_table_names:
 
-                 query = """
 
-                     MATCH (source:DataModel {en_name: $table_name})-[:DERIVED_FROM]->(target)
 
-                     RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
 
-                 """
 
-                 result = session.run(query, table_name=table_name)
 
-                 
 
-                 deps = []
 
-                 for record in result:
 
-                     target = record.get("target")
 
-                     target_labels = record.get("target_labels", [])
 
-                     
 
-                     if target:
 
-                         table_type = next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
 
-                         deps.append({
 
-                             "table_name": target,
 
-                             "table_type": table_type
 
-                         })
 
-                 
 
-                 dependencies[table_name] = deps
 
-     finally:
 
-         driver.close()
 
-     
 
-     # 创建执行计划
 
-     execution_plan = {
 
-         "exec_date": exec_date,
 
-         "resource_tasks": resource_tasks,
 
-         "model_tasks": model_tasks,
 
-         "dependencies": dependencies
 
-     }
 
-     
 
-     # 将执行计划保存到XCom
 
-     kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(execution_plan, default=json_serial))
 
-     logger.info(f"准备了执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
 
-     
 
-     return inserted_count 
 
- #############################################
 
- # 第二阶段: 数据处理阶段(Data Processing Phase)的函数
 
- #############################################
 
- def get_latest_date():
 
-     """获取数据库中包含记录的最近日期"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     try:
 
-         cursor.execute("""
 
-             SELECT DISTINCT exec_date
 
-             FROM airflow_dag_schedule 
 
-             ORDER BY exec_date DESC
 
-             LIMIT 1
 
-         """)
 
-         result = cursor.fetchone()
 
-         if result:
 
-             latest_date = result[0]
 
-             logger.info(f"找到最近的包含记录的日期: {latest_date}")
 
-             return latest_date
 
-         else:
 
-             logger.warning("未找到包含记录的日期,将使用当前日期")
 
-             return get_today_date()
 
-     except Exception as e:
 
-         logger.error(f"查找最近日期时出错: {str(e)}")
 
-         return get_today_date()
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def get_all_tasks(exec_date):
 
-     """获取所有需要执行的任务(DataResource和DataModel)"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     try:
 
-         # 查询所有资源表任务
 
-         cursor.execute("""
 
-             SELECT source_table, target_table, target_table_label, script_name, script_exec_mode
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND target_table_label = 'DataResource' AND script_name IS NOT NULL
 
-         """, (exec_date,))
 
-         resource_results = cursor.fetchall()
 
-         
 
-         # 查询所有模型表任务
 
-         cursor.execute("""
 
-             SELECT source_table, target_table, target_table_label, script_name, script_exec_mode
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND target_table_label = 'DataModel' AND script_name IS NOT NULL
 
-         """, (exec_date,))
 
-         model_results = cursor.fetchall()
 
-         
 
-         # 整理资源表信息
 
-         resource_tasks = []
 
-         for row in resource_results:
 
-             source_table, target_table, target_table_label, script_name, script_exec_mode = row
 
-             if script_name:  # 确保脚本名称不为空
 
-                 resource_tasks.append({
 
-                     "source_table": source_table,
 
-                     "target_table": target_table,
 
-                     "target_table_label": target_table_label,
 
-                     "script_name": script_name,
 
-                     "script_exec_mode": script_exec_mode or "append"
 
-                 })
 
-         
 
-         # 整理模型表信息
 
-         model_tasks = []
 
-         for row in model_results:
 
-             source_table, target_table, target_table_label, script_name, script_exec_mode = row
 
-             if script_name:  # 确保脚本名称不为空
 
-                 model_tasks.append({
 
-                     "source_table": source_table,
 
-                     "target_table": target_table,
 
-                     "target_table_label": target_table_label,
 
-                     "script_name": script_name,
 
-                     "script_exec_mode": script_exec_mode or "append"
 
-                 })
 
-         
 
-         logger.info(f"获取到 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
 
-         return resource_tasks, model_tasks
 
-     except Exception as e:
 
-         logger.error(f"获取任务信息时出错: {str(e)}")
 
-         return [], []
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def get_table_dependencies_for_data_phase(table_names):
 
-     """获取表之间的依赖关系"""
 
-     driver = get_neo4j_driver()
 
-     dependency_dict = {name: [] for name in table_names}
 
-     
 
-     try:
 
-         with driver.session() as session:
 
-             # 获取所有模型表之间的依赖关系
 
-             query = """
 
-                 MATCH (source:DataModel)-[:DERIVED_FROM]->(target)
 
-                 WHERE source.en_name IN $table_names
 
-                 RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
 
-             """
 
-             result = session.run(query, table_names=table_names)
 
-             
 
-             for record in result:
 
-                 source = record.get("source")
 
-                 target = record.get("target")
 
-                 target_labels = record.get("target_labels", [])
 
-                 
 
-                 if source and target:
 
-                     # 将目标表添加到源表的依赖列表中
 
-                     dependency_dict[source].append({
 
-                         "table_name": target,
 
-                         "table_type": next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
 
-                     })
 
-                     logger.debug(f"依赖关系: {source} 依赖于 {target}")
 
-     except Exception as e:
 
-         logger.error(f"从Neo4j获取依赖关系时出错: {str(e)}")
 
-     finally:
 
-         driver.close()
 
-     
 
-     return dependency_dict
 
- def create_execution_plan(**kwargs):
 
-     """准备执行计划的函数,使用从准备阶段传递的数据"""
 
-     try:
 
-         # 从XCom获取执行计划
 
-         execution_plan = kwargs['ti'].xcom_pull(task_ids='prepare_phase.prepare_dag_schedule', key='execution_plan')
 
-         
 
-         # 如果找不到执行计划,则从数据库获取
 
-         if not execution_plan:
 
-             # 获取执行日期
 
-             exec_date = get_latest_date()
 
-             logger.info(f"未找到执行计划,从数据库获取。使用执行日期: {exec_date}")
 
-             
 
-             # 获取所有任务
 
-             resource_tasks, model_tasks = get_all_tasks(exec_date)
 
-             
 
-             if not resource_tasks and not model_tasks:
 
-                 logger.warning(f"执行日期 {exec_date} 没有找到任务")
 
-                 return 0
 
-             
 
-             # 为所有模型表获取依赖关系
 
-             model_table_names = [task["target_table"] for task in model_tasks]
 
-             dependencies = get_table_dependencies_for_data_phase(model_table_names)
 
-             
 
-             # 创建执行计划
 
-             new_execution_plan = {
 
-                 "exec_date": exec_date,
 
-                 "resource_tasks": resource_tasks,
 
-                 "model_tasks": model_tasks,
 
-                 "dependencies": dependencies
 
-             }
 
-             
 
-             # 保存执行计划
 
-             kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(new_execution_plan, default=json_serial))
 
-             logger.info(f"创建新的执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
 
-             
 
-             return json.dumps(new_execution_plan, default=json_serial)
 
-         
 
-         logger.info(f"成功获取执行计划")
 
-         return execution_plan
 
-     except Exception as e:
 
-         logger.error(f"创建执行计划时出错: {str(e)}")
 
-         # 返回空执行计划
 
-         empty_plan = {
 
-             "exec_date": get_today_date(),
 
-             "resource_tasks": [],
 
-             "model_tasks": [],
 
-             "dependencies": {}
 
-         }
 
-         return json.dumps(empty_plan, default=json_serial)
 
- def process_resource(target_table, script_name, script_exec_mode, exec_date):
 
-     """处理单个资源表"""
 
-     logger.info(f"执行资源表 {target_table} 的脚本 {script_name}")
 
-     # 检查exec_date是否是JSON字符串
 
-     if isinstance(exec_date, str) and exec_date.startswith('{'):
 
-         try:
 
-             # 尝试解析JSON字符串
 
-             exec_date_data = json.loads(exec_date)
 
-             exec_date = exec_date_data.get("exec_date")
 
-             logger.info(f"从JSON中提取执行日期: {exec_date}")
 
-         except Exception as e:
 
-             logger.error(f"解析exec_date JSON时出错: {str(e)}")
 
-     
 
-     return execute_with_monitoring(
 
-         target_table=target_table,
 
-         script_name=script_name,
 
-         script_exec_mode=script_exec_mode,
 
-         exec_date=exec_date
 
-     )
 
- def process_model(target_table, script_name, script_exec_mode, exec_date):
 
-     """处理单个模型表"""
 
-     logger.info(f"执行模型表 {target_table} 的脚本 {script_name}")
 
-     # 检查exec_date是否是JSON字符串
 
-     if isinstance(exec_date, str) and exec_date.startswith('{'):
 
-         try:
 
-             # 尝试解析JSON字符串
 
-             exec_date_data = json.loads(exec_date)
 
-             exec_date = exec_date_data.get("exec_date")
 
-             logger.info(f"从JSON中提取执行日期: {exec_date}")
 
-         except Exception as e:
 
-             logger.error(f"解析exec_date JSON时出错: {str(e)}")
 
-     
 
-     return execute_with_monitoring(
 
-         target_table=target_table,
 
-         script_name=script_name,
 
-         script_exec_mode=script_exec_mode,
 
-         exec_date=exec_date
 
-     ) 
 
- #############################################
 
- # 第三阶段: 汇总阶段(Summary Phase)的函数
 
- #############################################
 
- def get_execution_stats(exec_date):
 
-     """获取当日执行统计信息"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     try:
 
-         # 查询总任务数
 
-         cursor.execute("""
 
-             SELECT COUNT(*) FROM airflow_dag_schedule WHERE exec_date = %s
 
-         """, (exec_date,))
 
-         result = cursor.fetchone()
 
-         total_tasks = result[0] if result else 0
 
-         
 
-         # 查询每种类型的任务数
 
-         cursor.execute("""
 
-             SELECT target_table_label, COUNT(*) 
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s 
 
-             GROUP BY target_table_label
 
-         """, (exec_date,))
 
-         type_counts = {row[0]: row[1] for row in cursor.fetchall()}
 
-         
 
-         # 查询执行结果统计
 
-         cursor.execute("""
 
-             SELECT COUNT(*) 
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND exec_result IS TRUE
 
-         """, (exec_date,))
 
-         result = cursor.fetchone()
 
-         success_count = result[0] if result else 0
 
-         
 
-         cursor.execute("""
 
-             SELECT COUNT(*) 
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND exec_result IS FALSE
 
-         """, (exec_date,))
 
-         result = cursor.fetchone()
 
-         fail_count = result[0] if result else 0
 
-         
 
-         cursor.execute("""
 
-             SELECT COUNT(*) 
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND exec_result IS NULL
 
-         """, (exec_date,))
 
-         result = cursor.fetchone()
 
-         pending_count = result[0] if result else 0
 
-         
 
-         # 计算执行时间统计
 
-         cursor.execute("""
 
-             SELECT AVG(exec_duration), MIN(exec_duration), MAX(exec_duration)
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND exec_duration IS NOT NULL
 
-         """, (exec_date,))
 
-         time_stats = cursor.fetchone()
 
-         
 
-         # 确保时间统计不为None
 
-         if time_stats and time_stats[0] is not None:
 
-             avg_duration = float(time_stats[0])
 
-             min_duration = float(time_stats[1]) if time_stats[1] is not None else None
 
-             max_duration = float(time_stats[2]) if time_stats[2] is not None else None
 
-         else:
 
-             avg_duration = None
 
-             min_duration = None
 
-             max_duration = None
 
-         
 
-         # 查询失败任务详情
 
-         cursor.execute("""
 
-             SELECT target_table, script_name, target_table_label, exec_duration
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND exec_result IS FALSE
 
-         """, (exec_date,))
 
-         failed_tasks = []
 
-         for row in cursor.fetchall():
 
-             task_dict = {
 
-                 "target_table": row[0],
 
-                 "script_name": row[1],
 
-                 "target_table_label": row[2],
 
-             }
 
-             if row[3] is not None:
 
-                 task_dict["exec_duration"] = float(row[3])
 
-             else:
 
-                 task_dict["exec_duration"] = None
 
-             failed_tasks.append(task_dict)
 
-         
 
-         # 计算成功率,避免除零错误
 
-         success_rate = 0
 
-         if total_tasks > 0:
 
-             success_rate = (success_count / total_tasks) * 100
 
-         
 
-         # 汇总统计信息
 
-         stats = {
 
-             "exec_date": exec_date,
 
-             "total_tasks": total_tasks,
 
-             "type_counts": type_counts,
 
-             "success_count": success_count,
 
-             "fail_count": fail_count,
 
-             "pending_count": pending_count,
 
-             "success_rate": success_rate,
 
-             "avg_duration": avg_duration,
 
-             "min_duration": min_duration,
 
-             "max_duration": max_duration,
 
-             "failed_tasks": failed_tasks
 
-         }
 
-         
 
-         return stats
 
-     except Exception as e:
 
-         logger.error(f"获取执行统计信息时出错: {str(e)}")
 
-         return {}
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def update_missing_results(exec_date):
 
-     """更新缺失的执行结果信息"""
 
-     conn = get_pg_conn()
 
-     cursor = conn.cursor()
 
-     try:
 
-         # 查询所有缺失执行结果的任务
 
-         cursor.execute("""
 
-             SELECT target_table, script_name
 
-             FROM airflow_dag_schedule 
 
-             WHERE exec_date = %s AND exec_result IS NULL
 
-         """, (exec_date,))
 
-         missing_results = cursor.fetchall()
 
-         
 
-         update_count = 0
 
-         for row in missing_results:
 
-             target_table, script_name = row
 
-             
 
-             # 如果有开始时间但没有结束时间,假设执行失败
 
-             cursor.execute("""
 
-                 SELECT exec_start_time
 
-                 FROM airflow_dag_schedule
 
-                 WHERE exec_date = %s AND target_table = %s AND script_name = %s
 
-             """, (exec_date, target_table, script_name))
 
-             
 
-             start_time = cursor.fetchone()
 
-             
 
-             if start_time and start_time[0]:
 
-                 # 有开始时间但无结果,标记为失败
 
-                 now = datetime.now()
 
-                 duration = (now - start_time[0]).total_seconds()
 
-                 
 
-                 cursor.execute("""
 
-                     UPDATE airflow_dag_schedule
 
-                     SET exec_result = FALSE, exec_end_time = %s, exec_duration = %s
 
-                     WHERE exec_date = %s AND target_table = %s AND script_name = %s
 
-                 """, (now, duration, exec_date, target_table, script_name))
 
-                 
 
-                 logger.warning(f"任务 {target_table} 的脚本 {script_name} 标记为失败,开始时间: {start_time[0]}")
 
-                 update_count += 1
 
-             else:
 
-                 # 没有开始时间且无结果,假设未执行
 
-                 logger.warning(f"任务 {target_table} 的脚本 {script_name} 未执行")
 
-         
 
-         conn.commit()
 
-         logger.info(f"更新了 {update_count} 个缺失结果的任务")
 
-         return update_count
 
-     except Exception as e:
 
-         logger.error(f"更新缺失执行结果时出错: {str(e)}")
 
-         conn.rollback()
 
-         return 0
 
-     finally:
 
-         cursor.close()
 
-         conn.close()
 
- def generate_unified_execution_report(exec_date, stats):
 
-     """生成统一执行报告"""
 
-     # 构建报告
 
-     report = []
 
-     report.append(f"========== 统一数据运维系统执行报告 ==========")
 
-     report.append(f"执行日期: {exec_date}")
 
-     report.append(f"总任务数: {stats['total_tasks']}")
 
-     
 
-     # 任务类型分布
 
-     report.append("\n--- 任务类型分布 ---")
 
-     for label, count in stats.get('type_counts', {}).items():
 
-         report.append(f"{label} 任务: {count} 个")
 
-     
 
-     # 执行结果统计
 
-     report.append("\n--- 执行结果统计 ---")
 
-     report.append(f"成功任务: {stats.get('success_count', 0)} 个")
 
-     report.append(f"失败任务: {stats.get('fail_count', 0)} 个")
 
-     report.append(f"未执行任务: {stats.get('pending_count', 0)} 个")
 
-     report.append(f"成功率: {stats.get('success_rate', 0):.2f}%")
 
-     
 
-     # 执行时间统计
 
-     report.append("\n--- 执行时间统计 (秒) ---")
 
-     avg_duration = stats.get('avg_duration')
 
-     min_duration = stats.get('min_duration')
 
-     max_duration = stats.get('max_duration')
 
-     
 
-     report.append(f"平均执行时间: {avg_duration:.2f}" if avg_duration is not None else "平均执行时间: N/A")
 
-     report.append(f"最短执行时间: {min_duration:.2f}" if min_duration is not None else "最短执行时间: N/A")
 
-     report.append(f"最长执行时间: {max_duration:.2f}" if max_duration is not None else "最长执行时间: N/A")
 
-     
 
-     # 失败任务详情
 
-     failed_tasks = stats.get('failed_tasks', [])
 
-     if failed_tasks:
 
-         report.append("\n--- 失败任务详情 ---")
 
-         for i, task in enumerate(failed_tasks, 1):
 
-             report.append(f"{i}. 表名: {task['target_table']}")
 
-             report.append(f"   脚本: {task['script_name']}")
 
-             report.append(f"   类型: {task['target_table_label']}")
 
-             exec_duration = task.get('exec_duration')
 
-             if exec_duration is not None:
 
-                 report.append(f"   执行时间: {exec_duration:.2f} 秒")
 
-             else:
 
-                 report.append("   执行时间: N/A")
 
-     
 
-     report.append("\n========== 报告结束 ==========")
 
-     
 
-     # 将报告转换为字符串
 
-     report_str = "\n".join(report)
 
-     
 
-     # 记录到日志
 
-     logger.info("\n" + report_str)
 
-     
 
-     return report_str
 
- def summarize_execution(**kwargs):
 
-     """汇总执行情况的主函数"""
 
-     try:
 
-         exec_date = kwargs.get('ds') or get_today_date()
 
-         logger.info(f"开始汇总执行日期 {exec_date} 的统一执行情况")
 
-         
 
-         # 1. 更新缺失的执行结果
 
-         try:
 
-             update_count = update_missing_results(exec_date)
 
-             logger.info(f"更新了 {update_count} 个缺失的执行结果")
 
-         except Exception as e:
 
-             logger.error(f"更新缺失执行结果时出错: {str(e)}")
 
-             update_count = 0
 
-         
 
-         # 2. 获取执行统计信息
 
-         try:
 
-             stats = get_execution_stats(exec_date)
 
-             if not stats:
 
-                 logger.warning("未能获取执行统计信息,将使用默认值")
 
-                 stats = {
 
-                     "exec_date": exec_date,
 
-                     "total_tasks": 0,
 
-                     "type_counts": {},
 
-                     "success_count": 0,
 
-                     "fail_count": 0,
 
-                     "pending_count": 0,
 
-                     "success_rate": 0,
 
-                     "avg_duration": None,
 
-                     "min_duration": None,
 
-                     "max_duration": None,
 
-                     "failed_tasks": []
 
-                 }
 
-         except Exception as e:
 
-             logger.error(f"获取执行统计信息时出错: {str(e)}")
 
-             stats = {
 
-                 "exec_date": exec_date,
 
-                 "total_tasks": 0,
 
-                 "type_counts": {},
 
-                 "success_count": 0,
 
-                 "fail_count": 0,
 
-                 "pending_count": 0,
 
-                 "success_rate": 0,
 
-                 "avg_duration": None,
 
-                 "min_duration": None,
 
-                 "max_duration": None,
 
-                 "failed_tasks": []
 
-             }
 
-         
 
-         # 3. 生成执行报告
 
-         try:
 
-             report = generate_unified_execution_report(exec_date, stats)
 
-         except Exception as e:
 
-             logger.error(f"生成执行报告时出错: {str(e)}")
 
-             report = f"生成执行报告时出错: {str(e)}\n基础统计: 总任务数: {stats.get('total_tasks', 0)}, 成功: {stats.get('success_count', 0)}, 失败: {stats.get('fail_count', 0)}"
 
-         
 
-         # 将报告和统计信息传递给下一个任务
 
-         try:
 
-             kwargs['ti'].xcom_push(key='execution_stats', value=json.dumps(stats, cls=DecimalEncoder))
 
-             kwargs['ti'].xcom_push(key='execution_report', value=report)
 
-         except Exception as e:
 
-             logger.error(f"保存报告到XCom时出错: {str(e)}")
 
-         
 
-         return report
 
-     except Exception as e:
 
-         logger.error(f"汇总执行情况时出现未处理的错误: {str(e)}")
 
-         # 返回一个简单的错误报告,确保任务不会失败
 
-         return f"执行汇总时出现错误: {str(e)}" 
 
- # 创建DAG
 
- with DAG(
 
-     "dag_dataops_unified_scheduler", 
 
-     start_date=datetime(2024, 1, 1), 
 
-     schedule_interval="@daily", 
 
-     catchup=False,
 
-     default_args={
 
-         'owner': 'airflow',
 
-         'depends_on_past': False,
 
-         'email_on_failure': False,
 
-         'email_on_retry': False,
 
-         'retries': 1,
 
-         'retry_delay': timedelta(minutes=5)
 
-     }
 
- ) as dag:
 
-     
 
-     #############################################
 
-     # 阶段1: 准备阶段(Prepare Phase)
 
-     #############################################
 
-     with TaskGroup("prepare_phase") as prepare_group:
 
-         # 任务开始标记
 
-         start_preparation = EmptyOperator(
 
-             task_id="start_preparation"
 
-         )
 
-         
 
-         # 准备调度任务
 
-         prepare_task = PythonOperator(
 
-             task_id="prepare_dag_schedule",
 
-             python_callable=prepare_dag_schedule,
 
-             provide_context=True
 
-         )
 
-         
 
-         # 创建执行计划 - 从data_processing_phase移至这里
 
-         create_plan = PythonOperator(
 
-             task_id="create_execution_plan",
 
-             python_callable=create_execution_plan,
 
-             provide_context=True
 
-         )
 
-         
 
-         # 准备完成标记
 
-         preparation_completed = EmptyOperator(
 
-             task_id="preparation_completed"
 
-         )
 
-         
 
-         # 设置任务依赖 - 调整为包含create_plan
 
-         start_preparation >> prepare_task >> create_plan >> preparation_completed
 
-     
 
-     #############################################
 
-     # 阶段2: 数据处理阶段(Data Processing Phase)
 
-     #############################################
 
-     with TaskGroup("data_processing_phase") as data_group:
 
-         # 过程完成标记
 
-         processing_completed = EmptyOperator(
 
-             task_id="processing_completed"
 
-         )
 
-     
 
-     #############################################
 
-     # 阶段3: 汇总阶段(Summary Phase)
 
-     #############################################
 
-     with TaskGroup("summary_phase") as summary_group:
 
-         # 汇总执行情况
 
-         summarize_task = PythonOperator(
 
-             task_id="summarize_execution",
 
-             python_callable=summarize_execution,
 
-             provide_context=True
 
-         )
 
-         
 
-         # 总结完成标记
 
-         summary_completed = EmptyOperator(
 
-             task_id="summary_completed"
 
-         )
 
-         
 
-         # 设置任务依赖
 
-         summarize_task >> summary_completed
 
-     
 
-     # 设置三个阶段之间的依赖关系 - 使用简单的TaskGroup依赖
 
-     prepare_group >> data_group >> summary_group
 
-     # 实际数据处理任务的动态创建逻辑
 
-     # 这部分代码在DAG运行时执行,根据数据库数据和执行计划动态创建任务
 
-     
 
-     # 从执行计划JSON中获取信息
 
-     execution_plan_json = '''{"exec_date": "2025-04-12", "resource_tasks": [], "model_tasks": [], "dependencies": {}}'''
 
-     
 
-     try:
 
-         # 尝试从文件中读取最新的执行计划,仅用于构建DAG视图
 
-         import os
 
-         plan_path = os.path.join(os.path.dirname(__file__), 'last_execution_plan.json')
 
-         if os.path.exists(plan_path):
 
-             with open(plan_path, 'r') as f:
 
-                 execution_plan_json = f.read()
 
-     except Exception as e:
 
-         logger.warning(f"读取执行计划默认值时出错: {str(e)}")
 
-     
 
-     # 解析执行计划获取任务信息
 
-     try:
 
-         execution_plan = json.loads(execution_plan_json)
 
-         exec_date = execution_plan.get("exec_date", get_today_date())
 
-         resource_tasks = execution_plan.get("resource_tasks", [])
 
-         model_tasks = execution_plan.get("model_tasks", [])
 
-         dependencies = execution_plan.get("dependencies", {})
 
-         
 
-         # 任务字典,用于设置依赖关系
 
-         task_dict = {}
 
-         
 
-         # 1. 创建资源表任务
 
-         for task_info in resource_tasks:
 
-             table_name = task_info["target_table"]
 
-             script_name = task_info["script_name"]
 
-             exec_mode = task_info.get("script_exec_mode", "append")
 
-             
 
-             # 创建安全的任务ID - 直接使用表名作为ID,更简洁易读
 
-             safe_table_name = table_name.replace(".", "_").replace("-", "_")
 
-             
 
-             # 确保所有任务都是data_processing_phase的一部分
 
-             with data_group:
 
-                 resource_task = PythonOperator(
 
-                     task_id=f"resource_{safe_table_name}",  # 不需要加前缀,TaskGroup会自动添加
 
-                     python_callable=process_resource,
 
-                     op_kwargs={
 
-                         "target_table": table_name,
 
-                         "script_name": script_name,
 
-                         "script_exec_mode": exec_mode,
 
-                         "exec_date": """{{ ti.xcom_pull(task_ids='prepare_phase.create_execution_plan') }}"""
 
-                     },
 
-                     retries=TASK_RETRY_CONFIG["retries"],
 
-                     retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"])
 
-                 )
 
-             
 
-             # 将任务添加到字典
 
-             task_dict[table_name] = resource_task
 
-             
 
-             # 设置任务依赖 - 使用正确的引用方式
 
-             preparation_completed >> resource_task
 
-         
 
-         # 创建有向图,用于检测模型表之间的依赖关系
 
-         G = nx.DiGraph()
 
-         
 
-         # 将所有模型表添加为节点
 
-         for task_info in model_tasks:
 
-             table_name = task_info["target_table"]
 
-             G.add_node(table_name)
 
-         
 
-         # 添加模型表之间的依赖边
 
-         for source, deps in dependencies.items():
 
-             for dep in deps:
 
-                 if dep.get("table_type") == "DataModel" and dep.get("table_name") in G.nodes():
 
-                     G.add_edge(dep.get("table_name"), source)  # 依赖方向:依赖项 -> 目标
 
-         
 
-         # 检测循环依赖并处理
 
-         cycles = list(nx.simple_cycles(G))
 
-         if cycles:
 
-             logger.warning(f"检测到循环依赖: {cycles}")
 
-             for cycle in cycles:
 
-                 G.remove_edge(cycle[-1], cycle[0])
 
-                 logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
 
-         
 
-         # 生成拓扑排序,确定执行顺序
 
-         try:
 
-             execution_order = list(nx.topological_sort(G))
 
-             logger.info(f"计算出的执行顺序: {execution_order}")
 
-         except Exception as e:
 
-             logger.error(f"生成拓扑排序失败: {str(e)}, 使用原始顺序")
 
-             execution_order = [task_info["target_table"] for task_info in model_tasks]
 
-         
 
-         # 2. 按拓扑排序顺序创建模型表任务
 
-         for table_name in execution_order:
 
-             task_info = next((t for t in model_tasks if t["target_table"] == table_name), None)
 
-             if not task_info:
 
-                 continue
 
-                 
 
-             script_name = task_info["script_name"]
 
-             exec_mode = task_info.get("script_exec_mode", "append")
 
-             
 
-             # 创建安全的任务ID
 
-             safe_table_name = table_name.replace(".", "_").replace("-", "_")
 
-             
 
-             # 确保所有任务都是data_processing_phase的一部分
 
-             with data_group:
 
-                 model_task = PythonOperator(
 
-                     task_id=f"model_{safe_table_name}", # 更简洁的ID
 
-                     python_callable=process_model,
 
-                     op_kwargs={
 
-                         "target_table": table_name,
 
-                         "script_name": script_name,
 
-                         "script_exec_mode": exec_mode,
 
-                         "exec_date": """{{ ti.xcom_pull(task_ids='prepare_phase.create_execution_plan') }}"""
 
-                     },
 
-                     retries=TASK_RETRY_CONFIG["retries"],
 
-                     retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"])
 
-                 )
 
-             
 
-             # 将任务添加到字典
 
-             task_dict[table_name] = model_task
 
-             
 
-             # 设置依赖关系
 
-             deps = dependencies.get(table_name, [])
 
-             has_dependency = False
 
-             
 
-             # 处理模型表之间的依赖
 
-             for dep in deps:
 
-                 dep_table = dep.get("table_name")
 
-                 dep_type = dep.get("table_type")
 
-                 
 
-                 if dep_table in task_dict:
 
-                     task_dict[dep_table] >> model_task
 
-                     has_dependency = True
 
-                     logger.info(f"设置依赖: {dep_table} >> {table_name}")
 
-             
 
-             # 如果没有依赖,则依赖于资源表任务
 
-             if not has_dependency:
 
-                 # 依赖于prepare_phase的完成
 
-                 preparation_completed >> model_task
 
-                 
 
-                 # 同时从所有资源表任务连接
 
-                 for resource_table in resource_tasks:
 
-                     resource_name = resource_table["target_table"]
 
-                     if resource_name in task_dict:
 
-                         task_dict[resource_name] >> model_task
 
-                         logger.info(f"设置资源依赖: {resource_name} >> {table_name}")
 
-         # 如果没有模型表任务,将所有资源表任务视为终端任务
 
-         if not model_tasks and resource_tasks:
 
-             terminal_tasks = [task["target_table"] for task in resource_tasks]
 
-         else:
 
-             # 找出所有终端任务(没有下游依赖的任务)
 
-             terminal_tasks = []
 
-             
 
-             # 检查所有模型表任务
 
-             for table_name in execution_order:
 
-                 # 检查是否有下游任务
 
-                 has_downstream = False
 
-                 for source, deps in dependencies.items():
 
-                     if source == table_name:  # 跳过自身
 
-                         continue
 
-                     for dep in deps:
 
-                         if dep.get("table_name") == table_name:
 
-                             has_downstream = True
 
-                             break
 
-                     if has_downstream:
 
-                         break
 
-                 
 
-                 # 如果没有下游任务,添加到终端任务列表
 
-                 if not has_downstream and table_name in task_dict:
 
-                     terminal_tasks.append(table_name)
 
-         # 如果既没有模型表任务也没有资源表任务,已有默认依赖链
 
-         if not terminal_tasks:
 
-             logger.warning("未找到任何任务,使用默认依赖链")
 
-         else:
 
-             # 将所有终端任务连接到完成标记
 
-             for table_name in terminal_tasks:
 
-                 if table_name in task_dict:
 
-                     task_dict[table_name] >> processing_completed
 
-                     logger.info(f"设置终端任务: {table_name} >> processing_completed")
 
-     except Exception as e:
 
-         logger.error(f"构建任务DAG时出错: {str(e)}")
 
-         import traceback
 
-         logger.error(traceback.format_exc())
 
-         
 
-         # 确保即使出错,也有清晰的执行路径
 
-         # 已经有默认依赖链,不需要额外添加 
 
 
  |