123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- # dag_data_model_daily.py
- from airflow import DAG
- from airflow.operators.python import PythonOperator
- from airflow.operators.empty import EmptyOperator
- from airflow.sensors.external_task import ExternalTaskSensor
- from datetime import datetime
- from utils import get_enabled_tables, is_data_model_table, run_model_script, get_model_dependency_graph
- from config import NEO4J_CONFIG
- import pendulum
- import logging
- import networkx as nx
- # 创建日志记录器
- logger = logging.getLogger(__name__)
- def generate_optimized_execution_order(table_names: list) -> list:
- """
- 生成优化的执行顺序,可处理循环依赖
- 参数:
- table_names: 表名列表
- 返回:
- list: 优化后的执行顺序列表
- """
- # 创建依赖图
- G = nx.DiGraph()
-
- # 添加所有节点
- for table_name in table_names:
- G.add_node(table_name)
-
- # 添加依赖边
- dependency_dict = get_model_dependency_graph(table_names)
- for target, upstreams in dependency_dict.items():
- for upstream in upstreams:
- if upstream in table_names: # 确保只考虑目标表集合中的表
- G.add_edge(upstream, target)
-
- # 检测循环依赖
- cycles = list(nx.simple_cycles(G))
- if cycles:
- logger.warning(f"检测到循环依赖,将尝试打破循环: {cycles}")
- # 打破循环依赖(简单策略:移除每个循环中的一条边)
- for cycle in cycles:
- # 移除循环中的最后一条边
- G.remove_edge(cycle[-1], cycle[0])
- logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
-
- # 生成拓扑排序
- try:
- execution_order = list(nx.topological_sort(G))
- return execution_order
- except Exception as e:
- logger.error(f"生成执行顺序失败: {str(e)}")
- # 返回原始列表作为备选
- return table_names
- with DAG("dag_data_model_daily", start_date=datetime(2024, 1, 1), schedule_interval="@daily", catchup=False) as dag:
- logger.info("初始化 dag_data_model_daily DAG")
-
- # 等待资源表 DAG 完成
- wait_for_resource = ExternalTaskSensor(
- task_id="wait_for_data_resource",
- external_dag_id="dag_data_resource",
- external_task_id=None,
- mode="poke",
- timeout=3600,
- poke_interval=30
- )
- logger.info("创建资源表等待任务 - wait_for_data_resource")
- # 创建一个完成标记任务,确保即使没有处理任务也能标记DAG完成
- daily_completed = EmptyOperator(
- task_id="daily_processing_completed",
- dag=dag
- )
- logger.info("创建任务完成标记 - daily_processing_completed")
- # 获取启用的 daily 模型表
- try:
- enabled_tables = get_enabled_tables("daily")
- model_tables = [t for t in enabled_tables if is_data_model_table(t['table_name'])]
- logger.info(f"获取到 {len(model_tables)} 个启用的 daily 模型表")
-
- if not model_tables:
- # 如果没有模型表需要处理,直接将等待任务与完成标记相连接
- logger.info("没有找到需要处理的模型表,DAG将直接标记为完成")
- wait_for_resource >> daily_completed
- else:
- # 获取表名列表
- table_names = [t['table_name'] for t in model_tables]
-
- # 使用优化函数生成执行顺序,可以处理循环依赖
- optimized_table_order = generate_optimized_execution_order(table_names)
- logger.info(f"生成优化执行顺序, 共 {len(optimized_table_order)} 个表")
-
- # 获取依赖图 (仍然需要用于设置任务依赖关系)
- try:
- dependency_graph = get_model_dependency_graph(table_names)
- logger.info(f"构建了 {len(dependency_graph)} 个表的依赖关系图")
- except Exception as e:
- logger.error(f"构建依赖关系图时出错: {str(e)}")
- # 出错时也要确保完成标记被触发
- wait_for_resource >> daily_completed
- raise
- # 构建 task 对象
- task_dict = {}
- for table_name in optimized_table_order:
- # 获取表的配置信息
- table_config = next((t for t in model_tables if t['table_name'] == table_name), None)
- if table_config:
- try:
- task = PythonOperator(
- task_id=f"process_model_{table_name}",
- python_callable=run_model_script,
- op_kwargs={"table_name": table_name, "execution_mode": table_config['execution_mode']},
- )
- task_dict[table_name] = task
- logger.info(f"创建模型处理任务: process_model_{table_name}")
- except Exception as e:
- logger.error(f"创建任务 process_model_{table_name} 时出错: {str(e)}")
- # 出错时也要确保完成标记被触发
- wait_for_resource >> daily_completed
- raise
- # 建立任务依赖(基于 DERIVED_FROM 图)
- dependency_count = 0
- for target, upstream_list in dependency_graph.items():
- for upstream in upstream_list:
- if upstream in task_dict and target in task_dict:
- task_dict[upstream] >> task_dict[target]
- dependency_count += 1
- logger.debug(f"建立依赖关系: {upstream} >> {target}")
- else:
- logger.warning(f"无法建立依赖关系,缺少任务: {upstream} 或 {target}")
- logger.info(f"总共建立了 {dependency_count} 个任务依赖关系")
- # 最顶层的 task(没有任何上游)需要依赖资源任务完成
- all_upstreams = set()
- for upstreams in dependency_graph.values():
- all_upstreams.update(upstreams)
- top_level_tasks = [t for t in table_names if t not in all_upstreams]
-
- if top_level_tasks:
- logger.info(f"发现 {len(top_level_tasks)} 个顶层任务: {', '.join(top_level_tasks)}")
- for name in top_level_tasks:
- if name in task_dict:
- wait_for_resource >> task_dict[name]
- else:
- logger.warning("没有找到顶层任务,请检查依赖关系图是否正确")
- # 如果没有顶层任务,直接将等待任务与完成标记相连接
- wait_for_resource >> daily_completed
-
- # 连接所有末端任务(没有下游任务的)到完成标记
- # 找出所有没有下游任务的任务(即终端任务)
- terminal_tasks = []
- for table_name, task in task_dict.items():
- is_terminal = True
- for upstream_list in dependency_graph.values():
- if table_name in upstream_list:
- is_terminal = False
- break
- if is_terminal:
- terminal_tasks.append(task)
- logger.debug(f"发现终端任务: {table_name}")
-
- # 如果有终端任务,将它们连接到完成标记
- if terminal_tasks:
- logger.info(f"连接 {len(terminal_tasks)} 个终端任务到完成标记")
- for task in terminal_tasks:
- task >> daily_completed
- else:
- # 如果没有终端任务(可能是因为存在循环依赖),直接将等待任务与完成标记相连接
- logger.warning("没有找到终端任务,直接将等待任务与完成标记相连接")
- wait_for_resource >> daily_completed
-
- except Exception as e:
- logger.error(f"获取 daily 模型表时出错: {str(e)}")
- # 出错时也要确保完成标记被触发
- wait_for_resource >> daily_completed
- raise
|