dag_data_model_daily.py 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. # dag_data_model_daily.py
  2. from airflow import DAG
  3. from airflow.operators.python import PythonOperator
  4. from airflow.operators.empty import EmptyOperator
  5. from airflow.sensors.external_task import ExternalTaskSensor
  6. from datetime import datetime
  7. from utils import get_enabled_tables, is_data_model_table, run_model_script, get_model_dependency_graph
  8. from config import NEO4J_CONFIG
  9. import pendulum
  10. import logging
  11. import networkx as nx
  12. # 创建日志记录器
  13. logger = logging.getLogger(__name__)
  14. def generate_optimized_execution_order(table_names: list) -> list:
  15. """
  16. 生成优化的执行顺序,可处理循环依赖
  17. 参数:
  18. table_names: 表名列表
  19. 返回:
  20. list: 优化后的执行顺序列表
  21. """
  22. # 创建依赖图
  23. G = nx.DiGraph()
  24. # 添加所有节点
  25. for table_name in table_names:
  26. G.add_node(table_name)
  27. # 添加依赖边
  28. dependency_dict = get_model_dependency_graph(table_names)
  29. for target, upstreams in dependency_dict.items():
  30. for upstream in upstreams:
  31. if upstream in table_names: # 确保只考虑目标表集合中的表
  32. G.add_edge(upstream, target)
  33. # 检测循环依赖
  34. cycles = list(nx.simple_cycles(G))
  35. if cycles:
  36. logger.warning(f"检测到循环依赖,将尝试打破循环: {cycles}")
  37. # 打破循环依赖(简单策略:移除每个循环中的一条边)
  38. for cycle in cycles:
  39. # 移除循环中的最后一条边
  40. G.remove_edge(cycle[-1], cycle[0])
  41. logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
  42. # 生成拓扑排序
  43. try:
  44. execution_order = list(nx.topological_sort(G))
  45. return execution_order
  46. except Exception as e:
  47. logger.error(f"生成执行顺序失败: {str(e)}")
  48. # 返回原始列表作为备选
  49. return table_names
  50. with DAG("dag_data_model_daily", start_date=datetime(2024, 1, 1), schedule_interval="@daily", catchup=False) as dag:
  51. logger.info("初始化 dag_data_model_daily DAG")
  52. # 等待资源表 DAG 完成
  53. wait_for_resource = ExternalTaskSensor(
  54. task_id="wait_for_data_resource",
  55. external_dag_id="dag_data_resource",
  56. external_task_id=None,
  57. mode="poke",
  58. timeout=3600,
  59. poke_interval=30
  60. )
  61. logger.info("创建资源表等待任务 - wait_for_data_resource")
  62. # 创建一个完成标记任务,确保即使没有处理任务也能标记DAG完成
  63. daily_completed = EmptyOperator(
  64. task_id="daily_processing_completed",
  65. dag=dag
  66. )
  67. logger.info("创建任务完成标记 - daily_processing_completed")
  68. # 获取启用的 daily 模型表
  69. try:
  70. enabled_tables = get_enabled_tables("daily")
  71. model_tables = [t for t in enabled_tables if is_data_model_table(t['table_name'])]
  72. logger.info(f"获取到 {len(model_tables)} 个启用的 daily 模型表")
  73. if not model_tables:
  74. # 如果没有模型表需要处理,直接将等待任务与完成标记相连接
  75. logger.info("没有找到需要处理的模型表,DAG将直接标记为完成")
  76. wait_for_resource >> daily_completed
  77. else:
  78. # 获取表名列表
  79. table_names = [t['table_name'] for t in model_tables]
  80. # 使用优化函数生成执行顺序,可以处理循环依赖
  81. optimized_table_order = generate_optimized_execution_order(table_names)
  82. logger.info(f"生成优化执行顺序, 共 {len(optimized_table_order)} 个表")
  83. # 获取依赖图 (仍然需要用于设置任务依赖关系)
  84. try:
  85. dependency_graph = get_model_dependency_graph(table_names)
  86. logger.info(f"构建了 {len(dependency_graph)} 个表的依赖关系图")
  87. except Exception as e:
  88. logger.error(f"构建依赖关系图时出错: {str(e)}")
  89. # 出错时也要确保完成标记被触发
  90. wait_for_resource >> daily_completed
  91. raise
  92. # 构建 task 对象
  93. task_dict = {}
  94. for table_name in optimized_table_order:
  95. # 获取表的配置信息
  96. table_config = next((t for t in model_tables if t['table_name'] == table_name), None)
  97. if table_config:
  98. try:
  99. task = PythonOperator(
  100. task_id=f"process_model_{table_name}",
  101. python_callable=run_model_script,
  102. op_kwargs={"table_name": table_name, "execution_mode": table_config['execution_mode']},
  103. )
  104. task_dict[table_name] = task
  105. logger.info(f"创建模型处理任务: process_model_{table_name}")
  106. except Exception as e:
  107. logger.error(f"创建任务 process_model_{table_name} 时出错: {str(e)}")
  108. # 出错时也要确保完成标记被触发
  109. wait_for_resource >> daily_completed
  110. raise
  111. # 建立任务依赖(基于 DERIVED_FROM 图)
  112. dependency_count = 0
  113. for target, upstream_list in dependency_graph.items():
  114. for upstream in upstream_list:
  115. if upstream in task_dict and target in task_dict:
  116. task_dict[upstream] >> task_dict[target]
  117. dependency_count += 1
  118. logger.debug(f"建立依赖关系: {upstream} >> {target}")
  119. else:
  120. logger.warning(f"无法建立依赖关系,缺少任务: {upstream} 或 {target}")
  121. logger.info(f"总共建立了 {dependency_count} 个任务依赖关系")
  122. # 最顶层的 task(没有任何上游)需要依赖资源任务完成
  123. all_upstreams = set()
  124. for upstreams in dependency_graph.values():
  125. all_upstreams.update(upstreams)
  126. top_level_tasks = [t for t in table_names if t not in all_upstreams]
  127. if top_level_tasks:
  128. logger.info(f"发现 {len(top_level_tasks)} 个顶层任务: {', '.join(top_level_tasks)}")
  129. for name in top_level_tasks:
  130. if name in task_dict:
  131. wait_for_resource >> task_dict[name]
  132. else:
  133. logger.warning("没有找到顶层任务,请检查依赖关系图是否正确")
  134. # 如果没有顶层任务,直接将等待任务与完成标记相连接
  135. wait_for_resource >> daily_completed
  136. # 连接所有末端任务(没有下游任务的)到完成标记
  137. # 找出所有没有下游任务的任务(即终端任务)
  138. terminal_tasks = []
  139. for table_name, task in task_dict.items():
  140. is_terminal = True
  141. for upstream_list in dependency_graph.values():
  142. if table_name in upstream_list:
  143. is_terminal = False
  144. break
  145. if is_terminal:
  146. terminal_tasks.append(task)
  147. logger.debug(f"发现终端任务: {table_name}")
  148. # 如果有终端任务,将它们连接到完成标记
  149. if terminal_tasks:
  150. logger.info(f"连接 {len(terminal_tasks)} 个终端任务到完成标记")
  151. for task in terminal_tasks:
  152. task >> daily_completed
  153. else:
  154. # 如果没有终端任务(可能是因为存在循环依赖),直接将等待任务与完成标记相连接
  155. logger.warning("没有找到终端任务,直接将等待任务与完成标记相连接")
  156. wait_for_resource >> daily_completed
  157. except Exception as e:
  158. logger.error(f"获取 daily 模型表时出错: {str(e)}")
  159. # 出错时也要确保完成标记被触发
  160. wait_for_resource >> daily_completed
  161. raise