script_utils.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # 这是dataops_scripts目录下的文件 - 用于验证路径修改成功
  4. import logging
  5. import sys
  6. import os
  7. import traceback
  8. # 添加父目录到Python路径,以便能导入dags目录下的config模块
  9. parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
  10. if parent_dir not in sys.path:
  11. sys.path.insert(0, parent_dir)
  12. import importlib.util
  13. from datetime import datetime, timedelta
  14. import pytz
  15. import re # 添加re模块以支持正则表达式
  16. # 导入Airflow相关包
  17. try:
  18. from airflow.models import Variable
  19. except ImportError:
  20. # 处理在非Airflow环境中运行的情况
  21. class Variable:
  22. @staticmethod
  23. def get(key, default_var=None):
  24. return default_var
  25. # 配置日志记录器
  26. logging.basicConfig(
  27. level=logging.INFO,
  28. format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
  29. handlers=[
  30. logging.StreamHandler(sys.stdout)
  31. ]
  32. )
  33. logger = logging.getLogger("script_utils")
  34. def get_config_path():
  35. """
  36. 从Airflow变量中获取DATAOPS_DAGS_PATH
  37. 返回:
  38. str: config.py的完整路径
  39. """
  40. try:
  41. # 从Airflow变量中获取DATAOPS_DAGS_PATH
  42. dags_path = Variable.get("DATAOPS_DAGS_PATH", "/opt/airflow/dags")
  43. logger.info(f"从Airflow变量获取到DATAOPS_DAGS_PATH: {dags_path}")
  44. # 构建config.py的完整路径
  45. config_path = os.path.join(dags_path, "config.py")
  46. if not os.path.exists(config_path):
  47. logger.warning(f"配置文件路径不存在: {config_path}, 将使用默认路径")
  48. # 尝试使用相对路径
  49. alt_config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../dags/config.py"))
  50. if os.path.exists(alt_config_path):
  51. logger.info(f"使用替代配置路径: {alt_config_path}")
  52. return alt_config_path
  53. return config_path
  54. except Exception as e:
  55. logger.error(f"获取配置路径时出错: {str(e)}")
  56. # 使用默认路径
  57. return os.path.abspath(os.path.join(os.path.dirname(__file__), "../dags/config.py"))
  58. def load_config_module():
  59. """
  60. 动态加载config.py模块
  61. 返回:
  62. module: 加载的config模块
  63. """
  64. try:
  65. config_path = get_config_path()
  66. logger.info(f"正在加载配置文件: {config_path}")
  67. # 动态加载config.py模块
  68. spec = importlib.util.spec_from_file_location("config", config_path)
  69. config_module = importlib.util.module_from_spec(spec)
  70. spec.loader.exec_module(config_module)
  71. return config_module
  72. except Exception as e:
  73. logger.error(f"加载配置模块时出错: {str(e)}")
  74. raise ImportError(f"无法加载配置模块: {str(e)}")
  75. def get_neo4j_driver():
  76. """获取Neo4j连接驱动"""
  77. try:
  78. # 使用get_config_path获取config路径
  79. config_path = get_config_path()
  80. if not os.path.exists(config_path):
  81. raise FileNotFoundError(f"配置文件不存在: {config_path}")
  82. logger.info(f"使用配置文件路径: {config_path}")
  83. # 动态加载config模块
  84. spec = importlib.util.spec_from_file_location("config", config_path)
  85. config_module = importlib.util.module_from_spec(spec)
  86. spec.loader.exec_module(config_module)
  87. # 从模块中获取NEO4J_CONFIG
  88. NEO4J_CONFIG = getattr(config_module, "NEO4J_CONFIG", None)
  89. if not NEO4J_CONFIG:
  90. raise ValueError(f"配置文件 {config_path} 中未找到NEO4J_CONFIG配置项")
  91. # 验证NEO4J_CONFIG中包含必要的配置项
  92. required_keys = ["uri", "user", "password"]
  93. missing_keys = [key for key in required_keys if key not in NEO4J_CONFIG]
  94. if missing_keys:
  95. raise ValueError(f"NEO4J_CONFIG缺少必要的配置项: {', '.join(missing_keys)}")
  96. # 创建Neo4j驱动
  97. from neo4j import GraphDatabase
  98. logger.info(f"使用配置创建Neo4j驱动: {NEO4J_CONFIG['uri']}")
  99. return GraphDatabase.driver(
  100. NEO4J_CONFIG['uri'],
  101. auth=(NEO4J_CONFIG['user'], NEO4J_CONFIG['password'])
  102. )
  103. except Exception as e:
  104. logger.error(f"创建Neo4j驱动失败: {str(e)}")
  105. logger.error(traceback.format_exc())
  106. raise
  107. def get_pg_config():
  108. """
  109. 从config.py获取PostgreSQL数据库配置
  110. 返回:
  111. dict: PostgreSQL配置字典
  112. """
  113. try:
  114. config_module = load_config_module()
  115. pg_config = getattr(config_module, "PG_CONFIG", None)
  116. if pg_config is None:
  117. logger.warning("配置模块中未找到PG_CONFIG")
  118. # 返回默认配置
  119. return {
  120. "host": "localhost",
  121. "port": 5432,
  122. "user": "postgres",
  123. "password": "postgres",
  124. "database": "dataops"
  125. }
  126. logger.info(f"已获取PostgreSQL配置: {pg_config}")
  127. return pg_config
  128. except Exception as e:
  129. logger.error(f"获取PostgreSQL配置时出错: {str(e)}")
  130. # 返回默认配置
  131. return {
  132. "host": "localhost",
  133. "port": 5432,
  134. "user": "postgres",
  135. "password": "postgres",
  136. "database": "dataops"
  137. }
  138. def get_upload_paths():
  139. """
  140. 从config.py获取文件上传和归档路径
  141. 返回:
  142. tuple: (上传路径, 归档路径)
  143. """
  144. try:
  145. config_module = load_config_module()
  146. upload_path = getattr(config_module, "STRUCTURE_UPLOAD_BASE_PATH", "/data/csv")
  147. archive_path = getattr(config_module, "STRUCTURE_UPLOAD_ARCHIVE_BASE_PATH", "/data/archive")
  148. logger.info(f"已获取上传路径: {upload_path}, 归档路径: {archive_path}")
  149. return upload_path, archive_path
  150. except Exception as e:
  151. logger.error(f"获取上传路径时出错: {str(e)}")
  152. # 返回默认路径
  153. return "/data/csv", "/data/archive"
  154. def get_date_range(exec_date, frequency):
  155. """
  156. 根据执行日期和频率,计算开始日期和结束日期
  157. 参数:
  158. exec_date (str): 执行日期,格式为 YYYY-MM-DD
  159. frequency (str): 频率,可选值为 daily, weekly, monthly, quarterly, yearly
  160. 返回:
  161. tuple: (start_date, end_date) 格式为 YYYY-MM-DD 的字符串
  162. """
  163. logger.info(f"计算日期范围 - 执行日期: {exec_date}, 频率: {frequency}")
  164. # 将输入的日期转换为上海时区的datetime对象
  165. shanghai_tz = pytz.timezone('Asia/Shanghai')
  166. try:
  167. # 解析输入的exec_date
  168. if isinstance(exec_date, str):
  169. date_obj = datetime.strptime(exec_date, '%Y-%m-%d')
  170. elif isinstance(exec_date, datetime):
  171. date_obj = exec_date
  172. else:
  173. raise ValueError(f"不支持的exec_date类型: {type(exec_date)}")
  174. # 转换为上海时区
  175. date_obj = shanghai_tz.localize(date_obj)
  176. logger.info(f"上海时区的执行日期: {date_obj}")
  177. # 根据不同频率计算日期范围
  178. if frequency.lower() == 'daily':
  179. # 每日: start_date = exec_date, end_date = exec_date + 1 day
  180. start_date = date_obj.strftime('%Y-%m-%d')
  181. end_date = (date_obj + timedelta(days=1)).strftime('%Y-%m-%d')
  182. elif frequency.lower() == 'weekly':
  183. # 每周: start_date = 本周一, end_date = 下周一
  184. days_since_monday = date_obj.weekday() # 0=周一, 6=周日
  185. monday = date_obj - timedelta(days=days_since_monday)
  186. next_monday = monday + timedelta(days=7)
  187. start_date = monday.strftime('%Y-%m-%d')
  188. end_date = next_monday.strftime('%Y-%m-%d')
  189. elif frequency.lower() == 'monthly':
  190. # 每月: start_date = 本月第一天, end_date = 下月第一天
  191. first_day = date_obj.replace(day=1)
  192. # 计算下个月的第一天
  193. if first_day.month == 12:
  194. next_month_first_day = first_day.replace(year=first_day.year + 1, month=1)
  195. else:
  196. next_month_first_day = first_day.replace(month=first_day.month + 1)
  197. start_date = first_day.strftime('%Y-%m-%d')
  198. end_date = next_month_first_day.strftime('%Y-%m-%d')
  199. elif frequency.lower() == 'quarterly':
  200. # 每季度: start_date = 本季度第一天, end_date = 下季度第一天
  201. quarter = (date_obj.month - 1) // 3 + 1 # 1-4季度
  202. first_month_of_quarter = (quarter - 1) * 3 + 1 # 季度的第一个月
  203. quarter_first_day = date_obj.replace(month=first_month_of_quarter, day=1)
  204. # 计算下个季度的第一天
  205. if quarter == 4:
  206. next_quarter_first_day = quarter_first_day.replace(year=quarter_first_day.year + 1, month=1)
  207. else:
  208. next_quarter_first_day = quarter_first_day.replace(month=first_month_of_quarter + 3)
  209. start_date = quarter_first_day.strftime('%Y-%m-%d')
  210. end_date = next_quarter_first_day.strftime('%Y-%m-%d')
  211. elif frequency.lower() == 'yearly':
  212. # 每年: start_date = 本年第一天, end_date = 下年第一天
  213. year_first_day = date_obj.replace(month=1, day=1)
  214. next_year_first_day = date_obj.replace(year=date_obj.year + 1, month=1, day=1)
  215. start_date = year_first_day.strftime('%Y-%m-%d')
  216. end_date = next_year_first_day.strftime('%Y-%m-%d')
  217. else:
  218. logger.error(f"不支持的频率: {frequency}")
  219. raise ValueError(f"不支持的频率: {frequency}")
  220. logger.info(f"计算结果 - 开始日期: {start_date}, 结束日期: {end_date}")
  221. return start_date, end_date
  222. except Exception as e:
  223. logger.error(f"计算日期范围时出错: {str(e)}", exc_info=True)
  224. raise
  225. import re
  226. from typing import Dict, List, Optional, Set
  227. def extract_source_fields_linked_to_template(sql: str, jinja_vars: List[str]) -> Set[str]:
  228. """
  229. 从 SQL 中提取和 jinja 模板变量绑定的源字段(支持各种形式)
  230. """
  231. fields = set()
  232. sql = re.sub(r"\s+", " ", sql)
  233. for var in jinja_vars:
  234. # 普通比较、函数包裹
  235. pattern = re.compile(
  236. r"""
  237. (?P<field>
  238. (?:\w+\s*\(\s*)? # 可选函数开始(如 DATE(
  239. [\w\.]+ # 字段名
  240. (?:\s+AS\s+\w+)? # 可选 CAST 形式
  241. \)? # 可选右括号
  242. )
  243. \s*(=|<|>|<=|>=)\s*['"]?\{\{\s*""" + var + r"""\s*\}\}['"]?
  244. """, re.IGNORECASE | re.VERBOSE
  245. )
  246. fields.update(match.group("field").strip() for match in pattern.finditer(sql))
  247. # BETWEEN '{{ start_date }}' AND '{{ end_date }}'
  248. if var == "start_date":
  249. pattern_between = re.compile(
  250. r"""(?P<field>
  251. (?:\w+\s*\(\s*)?[\w\.]+(?:\s+AS\s+\w+)?\)? # 字段(函数包裹可选)
  252. )
  253. \s+BETWEEN\s+['"]?\{\{\s*start_date\s*\}\}['"]?\s+AND\s+['"]?\{\{\s*end_date\s*\}\}
  254. """, re.IGNORECASE | re.VERBOSE
  255. )
  256. fields.update(match.group("field").strip() for match in pattern_between.finditer(sql))
  257. return {extract_core_field(f) for f in fields}
  258. def extract_core_field(expr: str) -> str:
  259. """
  260. 清洗函数包裹的字段表达式:DATE(sd.sale_date) -> sd.sale_date, CAST(...) -> ...
  261. """
  262. expr = re.sub(r"CAST\s*\(\s*([\w\.]+)\s+AS\s+\w+\s*\)", r"\1", expr, flags=re.IGNORECASE)
  263. expr = re.sub(r"\b\w+\s*\(\s*([\w\.]+)\s*\)", r"\1", expr)
  264. return expr.strip()
  265. def parse_select_aliases(sql: str) -> Dict[str, str]:
  266. """
  267. 提取 SELECT 中的字段别名映射:原字段 -> 目标别名
  268. """
  269. sql = re.sub(r"\s+", " ", sql)
  270. select_clause_match = re.search(r"SELECT\s+(.*?)\s+FROM", sql, re.IGNORECASE)
  271. if not select_clause_match:
  272. return {}
  273. select_clause = select_clause_match.group(1)
  274. mappings = {}
  275. for expr in select_clause.split(","):
  276. expr = expr.strip()
  277. alias_match = re.match(r"([\w\.]+)\s+AS\s+([\w]+)", expr, re.IGNORECASE)
  278. if alias_match:
  279. source, alias = alias_match.groups()
  280. mappings[source.strip()] = alias.strip()
  281. return mappings
  282. def find_target_date_field(sql: str, jinja_vars: List[str] = ["start_date", "end_date"]) -> Optional[str]:
  283. """
  284. 从 SQL 中找出与模板时间变量绑定的目标表字段(只返回一个)
  285. """
  286. source_fields = extract_source_fields_linked_to_template(sql, jinja_vars)
  287. alias_map = parse_select_aliases(sql)
  288. # 匹配 SELECT 中的映射字段
  289. for src_field in source_fields:
  290. if src_field in alias_map:
  291. return alias_map[src_field] # 源字段映射的目标字段
  292. # 若未通过 AS 映射,可能直接 SELECT sd.sale_date(裸字段)
  293. for src_field in source_fields:
  294. if '.' not in src_field:
  295. return src_field # 裸字段直接作为目标字段名
  296. return None
  297. def generate_delete_sql(sql_content, target_table=None):
  298. """
  299. 根据SQL脚本内容生成用于清理数据的DELETE语句
  300. 参数:
  301. sql_content (str): 原始SQL脚本内容
  302. target_table (str, optional): 目标表名,如果SQL脚本中无法解析出表名时使用
  303. 返回:
  304. str: DELETE语句,用于清理数据
  305. """
  306. logger.info("生成清理SQL语句,实现ETL作业幂等性")
  307. # 如果提供了目标表名,直接使用
  308. if target_table:
  309. logger.info(f"使用提供的目标表名: {target_table}")
  310. delete_stmt = f"""DELETE FROM {target_table}
  311. WHERE summary_date >= '{{{{ start_date }}}}'
  312. AND summary_date < '{{{{ end_date }}}}';"""
  313. logger.info(f"生成的清理SQL: {delete_stmt}")
  314. return delete_stmt
  315. # 尝试从SQL内容中解析出目标表名
  316. try:
  317. # 简单解析,尝试找出INSERT语句的目标表
  318. # 匹配 INSERT INTO xxx 或 INSERT INTO "xxx" 或 INSERT INTO `xxx` 或 INSERT INTO [xxx]
  319. insert_match = re.search(r'INSERT\s+INTO\s+(?:["\[`])?([a-zA-Z0-9_\.]+)(?:["\]`])?', sql_content, re.IGNORECASE)
  320. if insert_match:
  321. table_name = insert_match.group(1)
  322. logger.info(f"从SQL中解析出目标表名: {table_name}")
  323. delete_stmt = f"""DELETE FROM {table_name}
  324. WHERE summary_date >= '{{{{ start_date }}}}'
  325. AND summary_date < '{{{{ end_date }}}}';"""
  326. logger.info(f"生成的清理SQL: {delete_stmt}")
  327. return delete_stmt
  328. else:
  329. logger.warning("无法从SQL中解析出目标表名,无法生成清理SQL")
  330. return None
  331. except Exception as e:
  332. logger.error(f"解析SQL生成清理语句时出错: {str(e)}", exc_info=True)
  333. return None
  334. def get_one_day_range(exec_date):
  335. """
  336. 根据exec_date返回当天的00:00:00和次日00:00:00,均为datetime对象
  337. 参数:
  338. exec_date (str 或 datetime): 执行日期,格式为YYYY-MM-DD或datetime对象
  339. 返回:
  340. tuple(datetime, datetime): (start_datetime, end_datetime)
  341. """
  342. shanghai_tz = pytz.timezone('Asia/Shanghai')
  343. if isinstance(exec_date, str):
  344. date_obj = datetime.strptime(exec_date, '%Y-%m-%d')
  345. elif isinstance(exec_date, datetime):
  346. date_obj = exec_date
  347. else:
  348. raise ValueError(f"不支持的exec_date类型: {type(exec_date)}")
  349. # 当天00:00:00
  350. start_datetime = shanghai_tz.localize(datetime(date_obj.year, date_obj.month, date_obj.day, 0, 0, 0))
  351. # 次日00:00:00
  352. end_datetime = start_datetime + timedelta(days=1)
  353. return start_datetime, end_datetime
  354. def get_target_dt_column(table_name, script_name=None):
  355. """
  356. 从Neo4j或data_transform_scripts表获取目标日期列
  357. 参数:
  358. table_name (str): 表名
  359. script_name (str, optional): 脚本名称
  360. 返回:
  361. str: 目标日期列名
  362. """
  363. logger.info(f"获取表 {table_name} 的目标日期列")
  364. try:
  365. # 首先从Neo4j获取
  366. driver = get_neo4j_driver()
  367. with driver.session() as session:
  368. # 尝试从DataModel节点的relations关系属性中获取
  369. query = """
  370. MATCH (n {en_name: $table_name})
  371. RETURN n.target_dt_column AS target_dt_column
  372. """
  373. result = session.run(query, table_name=table_name)
  374. record = result.single()
  375. if record and record.get("target_dt_column"):
  376. target_dt_column = record.get("target_dt_column")
  377. logger.info(f"从Neo4j获取到表 {table_name} 的目标日期列: {target_dt_column}")
  378. return target_dt_column
  379. # 导入需要的模块以连接数据库
  380. import sqlalchemy
  381. from sqlalchemy import create_engine, text
  382. # Neo4j中找不到,尝试从data_transform_scripts表获取
  383. # 获取目标数据库连接
  384. pg_config = get_pg_config()
  385. if not pg_config:
  386. logger.error("无法获取PG_CONFIG配置,无法连接数据库查询目标日期列")
  387. return None
  388. # 创建数据库引擎
  389. db_url = f"postgresql://{pg_config['user']}:{pg_config['password']}@{pg_config['host']}:{pg_config['port']}/{pg_config['database']}"
  390. engine = create_engine(db_url)
  391. if not engine:
  392. logger.error("无法创建数据库引擎,无法获取目标日期列")
  393. return None
  394. # 查询data_transform_scripts表
  395. try:
  396. query = f"""
  397. SELECT target_dt_column
  398. FROM data_transform_scripts
  399. WHERE target_table = '{table_name}'
  400. """
  401. if script_name:
  402. query += f" AND script_name = '{script_name}'"
  403. query += " LIMIT 1"
  404. with engine.connect() as conn:
  405. result = conn.execute(text(query))
  406. row = result.fetchone()
  407. if row and row[0]:
  408. target_dt_column = row[0]
  409. logger.info(f"从data_transform_scripts表获取到表 {table_name} 的目标日期列: {target_dt_column}")
  410. return target_dt_column
  411. except Exception as db_err:
  412. logger.error(f"从data_transform_scripts表获取目标日期列时出错: {str(db_err)}")
  413. logger.error(traceback.format_exc())
  414. # 都找不到,使用默认值
  415. logger.warning(f"未找到表 {table_name} 的目标日期列,将使用默认值 'data_date'")
  416. return "data_date"
  417. except Exception as e:
  418. logger.error(f"获取目标日期列时出错: {str(e)}")
  419. logger.error(traceback.format_exc())
  420. return None
  421. finally:
  422. if 'driver' in locals() and driver:
  423. driver.close()