123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- # dag_data_model_scheduler.py
- from airflow import DAG
- from airflow.operators.python import PythonOperator
- from airflow.operators.empty import EmptyOperator
- from airflow.sensors.external_task import ExternalTaskSensor
- from datetime import datetime, timedelta
- import pendulum
- import logging
- import networkx as nx
- from utils import (
- get_enabled_tables,
- is_data_model_table,
- run_model_script,
- get_model_dependency_graph,
- check_script_exists,
- get_script_name_from_neo4j
- )
- from config import TASK_RETRY_CONFIG
- # 创建日志记录器
- logger = logging.getLogger(__name__)
- def get_all_enabled_tables_for_today():
- """
- 根据当前日期获取所有需要处理的表
-
- 返回:
- list: 需要处理的表配置列表
- """
- today = pendulum.today()
- # 原始代码(注释)
- # is_monday = today.day_of_week == 0
- # is_first_day_of_month = today.day == 1
- # is_first_day_of_year = today.month == 1 and today.day == 1
-
- # 测试用:所有条件设为True
- is_monday = True
- is_first_day_of_month = True
- is_first_day_of_year = True
-
- logger.info(f"今日日期: {today.to_date_string()}")
- logger.info(f"日期特性: 是否周一={is_monday}, 是否月初={is_first_day_of_month}, 是否年初={is_first_day_of_year}")
-
- all_tables = []
-
- # 每天都处理daily表
- daily_tables = get_enabled_tables("daily")
- all_tables.extend(daily_tables)
- logger.info(f"添加daily表: {len(daily_tables)}个")
-
- # 周一处理weekly表
- if is_monday:
- weekly_tables = get_enabled_tables("weekly")
- all_tables.extend(weekly_tables)
- logger.info(f"今天是周一,添加weekly表: {len(weekly_tables)}个")
-
- # 月初处理monthly表
- if is_first_day_of_month:
- monthly_tables = get_enabled_tables("monthly")
- all_tables.extend(monthly_tables)
- logger.info(f"今天是月初,添加monthly表: {len(monthly_tables)}个")
-
- # 年初处理yearly表
- if is_first_day_of_year:
- yearly_tables = get_enabled_tables("yearly")
- all_tables.extend(yearly_tables)
- logger.info(f"今天是年初,添加yearly表: {len(yearly_tables)}个")
-
- # 去重
- unique_tables = {}
- for item in all_tables:
- table_name = item["table_name"]
- if table_name not in unique_tables:
- unique_tables[table_name] = item
- else:
- # 如果存在重复,优先保留execution_mode为full_refresh的配置
- if item["execution_mode"] == "full_refresh":
- unique_tables[table_name] = item
-
- result_tables = list(unique_tables.values())
- logger.info(f"去重后,共 {len(result_tables)} 个表需要处理")
-
- # 记录所有需要处理的表
- for idx, item in enumerate(result_tables, 1):
- logger.info(f"表[{idx}]: {item['table_name']}, 执行模式: {item['execution_mode']}")
-
- return result_tables
- def optimize_execution_plan(tables):
- """
- 优化表的执行计划
-
- 参数:
- tables (list): 表配置列表
-
- 返回:
- tuple: (优化后的表执行顺序, 依赖关系图)
- """
- logger.info("开始优化执行计划...")
-
- # 筛选出DataModel类型的表
- model_tables = []
- for table in tables:
- table_name = table["table_name"]
- if is_data_model_table(table_name):
- model_tables.append(table)
-
- logger.info(f"筛选出 {len(model_tables)} 个DataModel类型的表")
-
- if not model_tables:
- logger.warning("没有找到DataModel类型的表,无需优化执行计划")
- return [], {}
-
- # 获取表名列表
- table_names = [t["table_name"] for t in model_tables]
-
- # 创建有向图
- G = nx.DiGraph()
-
- # 添加所有节点
- for table_name in table_names:
- G.add_node(table_name)
-
- # 获取依赖关系
- dependency_dict = get_model_dependency_graph(table_names)
- logger.info(f"获取到 {len(dependency_dict)} 个表的依赖关系")
-
- # 添加依赖边
- edge_count = 0
- for target, upstreams in dependency_dict.items():
- for upstream in upstreams:
- if upstream in table_names: # 确保只考虑当前处理的表
- G.add_edge(upstream, target) # 从上游指向下游
- edge_count += 1
-
- logger.info(f"依赖图中添加了 {edge_count} 条边")
-
- # 检测循环依赖
- cycles = list(nx.simple_cycles(G))
- if cycles:
- logger.warning(f"检测到 {len(cycles)} 个循环依赖,将尝试打破循环")
- # 打破循环依赖(简单策略:移除每个循环中的最后一条边)
- for cycle in cycles:
- # 移除循环中的最后一条边
- G.remove_edge(cycle[-1], cycle[0])
- logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
-
- # 生成拓扑排序
- try:
- # 拓扑排序会从没有入边的节点开始,这些节点是上游节点,因此排序结果是从上游到下游
- execution_order = list(nx.topological_sort(G))
- logger.info(f"成功生成执行顺序,按从上游到下游顺序共 {len(execution_order)} 个表")
-
- # 创建结果依赖字典,包含所有表(即使没有依赖)
- result_dependency_dict = {name: [] for name in table_names}
-
- # 添加实际依赖关系
- for target, upstreams in dependency_dict.items():
- if target in table_names: # 确保只考虑当前处理的表
- result_dependency_dict[target] = [u for u in upstreams if u in table_names]
-
- return execution_order, result_dependency_dict
- except Exception as e:
- logger.error(f"生成执行顺序失败: {str(e)}")
- # 如果拓扑排序失败,返回原始表名列表和空依赖图
- return table_names, {name: [] for name in table_names}
- with DAG(
- "dag_data_model_scheduler",
- start_date=datetime(2024, 1, 1),
- schedule_interval="@daily",
- catchup=False
- ) as dag:
- logger.info("初始化 dag_data_model_scheduler DAG")
-
- # 等待资源表 DAG 完成
- wait_for_resource = ExternalTaskSensor(
- task_id="wait_for_resource_loading",
- external_dag_id="dag_data_resource_scheduler",
- external_task_id="resource_loading_completed",
- mode="poke",
- timeout=3600,
- poke_interval=30
- )
- logger.info("创建资源表等待任务 - wait_for_resource_loading")
- # 创建一个完成标记任务
- model_processing_completed = EmptyOperator(
- task_id="model_processing_completed",
- dag=dag
- )
- logger.info("创建模型处理完成标记 - model_processing_completed")
- try:
- # 获取今日需要处理的所有表
- all_enabled_tables = get_all_enabled_tables_for_today()
-
- if not all_enabled_tables:
- logger.info("今天没有需要处理的表,直接连接开始和结束任务")
- wait_for_resource >> model_processing_completed
- else:
- # 优化执行计划
- execution_order, dependency_dict = optimize_execution_plan(all_enabled_tables)
-
- if not execution_order:
- logger.info("执行计划为空,直接连接开始和结束任务")
- wait_for_resource >> model_processing_completed
- else:
- # 创建任务字典
- task_dict = {}
-
- # 为每个表创建处理任务
- for table_name in execution_order:
- # 查找表配置
- table_config = next((t for t in all_enabled_tables if t["table_name"] == table_name), None)
-
- if table_config:
- logger.info(f"为表 {table_name} 创建处理任务,执行模式: {table_config['execution_mode']}")
-
- # 创建任务
- task = PythonOperator(
- task_id=f"process_{table_name}",
- python_callable=run_model_script,
- op_kwargs={
- "table_name": table_name,
- "execution_mode": table_config["execution_mode"]
- },
- retries=TASK_RETRY_CONFIG["retries"],
- retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"]),
- dag=dag
- )
-
- # 将任务添加到字典
- task_dict[table_name] = task
-
- # 设置任务间的依赖关系
- for table_name, task in task_dict.items():
- # 获取上游依赖
- upstream_tables = dependency_dict.get(table_name, [])
-
- if not upstream_tables:
- # 如果没有上游依赖,直接连接到资源表等待任务
- logger.info(f"表 {table_name} 没有上游依赖,连接到资源表等待任务")
- wait_for_resource >> task
- else:
- # 设置与上游表的依赖关系
- for upstream_table in upstream_tables:
- if upstream_table in task_dict:
- logger.info(f"设置依赖: {upstream_table} >> {table_name}")
- task_dict[upstream_table] >> task
-
- # 检查是否是末端节点(没有下游节点)
- is_terminal = True
- for target, upstreams in dependency_dict.items():
- if table_name in upstreams:
- is_terminal = False
- break
-
- # 如果是末端节点,连接到模型处理完成标记
- if is_terminal:
- logger.info(f"表 {table_name} 是末端节点,连接到模型处理完成标记")
- task >> model_processing_completed
-
- # 处理特殊情况:检查是否有任务连接到完成标记
- has_connection_to_completed = False
- for task in task_dict.values():
- for downstream in task.downstream_list:
- if downstream.task_id == model_processing_completed.task_id:
- has_connection_to_completed = True
- break
-
- # 如果没有任务连接到完成标记,连接所有任务到完成标记
- if not has_connection_to_completed and task_dict:
- logger.info("没有发现连接到完成标记的任务,连接所有任务到完成标记")
- for task in task_dict.values():
- task >> model_processing_completed
-
- # 处理特殊情况:如果资源等待任务没有下游任务,直接连接到完成标记
- if not wait_for_resource.downstream_list:
- logger.info("资源等待任务没有下游任务,直接连接到完成标记")
- wait_for_resource >> model_processing_completed
-
- except Exception as e:
- logger.error(f"构建DAG时出错: {str(e)}")
- import traceback
- logger.error(traceback.format_exc())
- # 确保出错时也有完整的执行流
- wait_for_resource >> model_processing_completed
|