123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173 |
- """
- 统一数据运维调度器 DAG
- 功能:
- 1. 将数据处理与统计汇总整合到一个DAG中
- 2. 保留原有的每个处理脚本单独运行的特性,方便通过Web UI查看
- 3. 支持执行计划文件的动态解析和执行
- 4. 执行完成后自动生成汇总报告
- """
- from airflow import DAG
- from airflow.operators.python import PythonOperator, ShortCircuitOperator
- from airflow.operators.empty import EmptyOperator
- from airflow.utils.task_group import TaskGroup
- from datetime import datetime, timedelta, date
- import logging
- import networkx as nx
- import json
- import os
- import pendulum
- from decimal import Decimal
- from common import (
- get_pg_conn,
- get_neo4j_driver,
- get_today_date
- )
- from config import TASK_RETRY_CONFIG, SCRIPTS_BASE_PATH, PG_CONFIG, NEO4J_CONFIG
- import pytz
- # 创建日志记录器
- logger = logging.getLogger(__name__)
- # 开启详细诊断日志记录
- ENABLE_DEBUG_LOGGING = True
- def log_debug(message):
- """记录调试日志,但只在启用调试模式时"""
- if ENABLE_DEBUG_LOGGING:
- logger.info(f"[DEBUG] {message}")
- # 在DAG启动时输出诊断信息
- log_debug("======== 诊断信息 ========")
- log_debug(f"当前工作目录: {os.getcwd()}")
- log_debug(f"SCRIPTS_BASE_PATH: {SCRIPTS_BASE_PATH}")
- log_debug(f"导入的common模块路径: {get_pg_conn.__module__}")
- # 检查数据库连接
- def validate_database_connection():
- """验证数据库连接是否正常"""
- try:
- conn = get_pg_conn()
- cursor = conn.cursor()
- cursor.execute("SELECT version()")
- version = cursor.fetchone()
- log_debug(f"数据库连接正常,PostgreSQL版本: {version[0]}")
-
- # 检查airflow_exec_plans表是否存在
- cursor.execute("""
- SELECT EXISTS (
- SELECT FROM information_schema.tables
- WHERE table_name = 'airflow_exec_plans'
- )
- """)
- table_exists = cursor.fetchone()[0]
- if table_exists:
- # 检查表结构
- cursor.execute("""
- SELECT column_name, data_type
- FROM information_schema.columns
- WHERE table_name = 'airflow_exec_plans'
- """)
- columns = cursor.fetchall()
- log_debug(f"airflow_exec_plans表存在,列信息:")
- for col in columns:
- log_debug(f" - {col[0]}: {col[1]}")
-
- # 查询最新记录数量
- cursor.execute("SELECT COUNT(*) FROM airflow_exec_plans")
- count = cursor.fetchone()[0]
- log_debug(f"airflow_exec_plans表中有 {count} 条记录")
-
- # 检查最近的执行记录
- cursor.execute("""
- SELECT exec_date, COUNT(*) as record_count
- FROM airflow_exec_plans
- GROUP BY exec_date
- ORDER BY exec_date DESC
- LIMIT 3
- """)
- recent_dates = cursor.fetchall()
- log_debug(f"最近的执行日期及记录数:")
- for date_info in recent_dates:
- log_debug(f" - {date_info[0]}: {date_info[1]} 条记录")
- else:
- log_debug("airflow_exec_plans表不存在!")
-
- cursor.close()
- conn.close()
- return True
- except Exception as e:
- log_debug(f"数据库连接验证失败: {str(e)}")
- import traceback
- log_debug(f"错误堆栈: {traceback.format_exc()}")
- return False
- # 执行数据库连接验证
- try:
- validate_database_connection()
- except Exception as e:
- log_debug(f"验证数据库连接时出错: {str(e)}")
- log_debug("======== 诊断信息结束 ========")
- #############################################
- # 通用工具函数
- #############################################
- def json_serial(obj):
- """将日期对象序列化为ISO格式字符串的JSON序列化器"""
- if isinstance(obj, (datetime, date)):
- return obj.isoformat()
- raise TypeError(f"类型 {type(obj)} 不能被序列化为JSON")
- # 添加自定义JSON编码器解决Decimal序列化问题
- class DecimalEncoder(json.JSONEncoder):
- def default(self, obj):
- if isinstance(obj, Decimal):
- return float(obj)
- # 处理日期类型
- elif isinstance(obj, (datetime, date)):
- return obj.isoformat()
- # 让父类处理其他类型
- return super(DecimalEncoder, self).default(obj)
- #############################################
- # 新的工具函数
- #############################################
- def execute_python_script(target_table, script_name, script_exec_mode, exec_date, **kwargs):
- """
- 执行Python脚本并返回执行结果
-
- 参数:
- target_table: 目标表名
- script_name: 脚本名称
- script_exec_mode: 脚本执行模式
- exec_date: 执行日期
-
- 返回:
- bool: 脚本执行结果
- """
- # 添加详细日志
- logger.info(f"===== 开始执行脚本 =====")
- logger.info(f"target_table: {target_table}, 类型: {type(target_table)}")
- logger.info(f"script_name: {script_name}, 类型: {type(script_name)}")
- logger.info(f"script_exec_mode: {script_exec_mode}, 类型: {type(script_exec_mode)}")
- logger.info(f"exec_date: {exec_date}, 类型: {type(exec_date)}")
- # 检查script_name是否为空
- if not script_name:
- logger.error(f"表 {target_table} 的script_name为空,无法执行")
- return False
-
- # 记录执行开始时间
- start_time = datetime.now()
-
- try:
- # 导入和执行脚本模块
- import importlib.util
- import sys
-
- script_path = os.path.join(SCRIPTS_BASE_PATH, script_name)
-
- if not os.path.exists(script_path):
- logger.error(f"脚本文件不存在: {script_path}")
- return False
-
- # 动态导入模块
- spec = importlib.util.spec_from_file_location("dynamic_module", script_path)
- module = importlib.util.module_from_spec(spec)
- spec.loader.exec_module(module)
-
- # 检查并调用标准入口函数run
- if hasattr(module, "run"):
- logger.info(f"调用脚本 {script_name} 的标准入口函数 run()")
- result = module.run(
- table_name=target_table,
- execution_mode=script_exec_mode,
- exec_date=exec_date,
- script_name=script_name
- )
- logger.info(f"脚本执行完成,原始返回值: {result}, 类型: {type(result)}")
-
- # 确保result是布尔值
- if result is None:
- logger.warning(f"脚本返回值为None,转换为False")
- result = False
- elif not isinstance(result, bool):
- original_result = result
- result = bool(result)
- logger.warning(f"脚本返回非布尔值 {original_result},转换为布尔值: {result}")
-
- # 记录结束时间和结果
- end_time = datetime.now()
- duration = (end_time - start_time).total_seconds()
- logger.info(f"脚本 {script_name} 执行完成,结果: {result}, 耗时: {duration:.2f}秒")
-
- return result
- else:
- logger.error(f"脚本 {script_name} 中未定义标准入口函数 run(),无法执行")
- return False
- except Exception as e:
- # 处理异常
- logger.error(f"执行任务出错: {str(e)}")
- end_time = datetime.now()
- duration = (end_time - start_time).total_seconds()
- logger.error(f"脚本 {script_name} 执行失败,耗时: {duration:.2f}秒")
- logger.info(f"===== 脚本执行异常结束 =====")
- import traceback
- logger.error(traceback.format_exc())
-
- # 确保不会阻塞DAG
- return False
- #############################################
- # 第一阶段: 准备阶段(Prepare Phase)的函数
- #############################################
- def get_enabled_tables():
- """获取所有启用的表"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- cursor.execute("""
- SELECT owner_id, table_name
- FROM schedule_status
- WHERE schedule_is_enabled = TRUE
- """)
- result = cursor.fetchall()
- return [row[1] for row in result] # 只返回表名
- except Exception as e:
- logger.error(f"获取启用表失败: {str(e)}")
- return []
- finally:
- cursor.close()
- conn.close()
- def check_table_directly_subscribed(table_name):
- """检查表是否在schedule_status表中直接订阅"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- cursor.execute("""
- SELECT schedule_is_enabled
- FROM schedule_status
- WHERE table_name = %s
- """, (table_name,))
- result = cursor.fetchone()
- return result and result[0] is True
- except Exception as e:
- logger.error(f"检查表订阅状态失败: {str(e)}")
- return False
- finally:
- cursor.close()
- conn.close()
- def get_table_info_from_neo4j(table_name):
- """从Neo4j获取表的详细信息"""
- driver = get_neo4j_driver()
- # 检查表是否直接订阅
- is_directly_schedule = check_table_directly_subscribed(table_name)
- table_info = {
- 'target_table': table_name,
- 'is_directly_schedule': is_directly_schedule, # 初始值设为True,从schedule_status表获取
- }
-
- try:
- with driver.session() as session:
- # 查询表标签和状态
- query_table = """
- MATCH (t {en_name: $table_name})
- RETURN labels(t) AS labels, t.status AS status, t.frequency AS frequency
- """
- result = session.run(query_table, table_name=table_name)
- record = result.single()
-
- if record:
- labels = record.get("labels", [])
- table_info['target_table_label'] = [label for label in labels if label in ["DataResource", "DataModel", "DataSource"]][0] if labels else None
- table_info['target_table_status'] = record.get("status", True) # 默认为True
- table_info['default_update_frequency'] = record.get("frequency")
-
- # 根据标签类型查询关系和脚本信息
- if "DataResource" in labels:
- query_rel = """
- MATCH (target {en_name: $table_name})-[rel:ORIGINATES_FROM]->(source)
- RETURN source.en_name AS source_table, rel.script_name AS script_name,
- rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
- """
- elif "DataModel" in labels:
- query_rel = """
- MATCH (target {en_name: $table_name})-[rel:DERIVED_FROM]->(source)
- RETURN source.en_name AS source_table, rel.script_name AS script_name,
- rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
- """
- else:
- logger.warning(f"表 {table_name} 不是DataResource或DataModel类型")
- return table_info
-
- result = session.run(query_rel, table_name=table_name)
- record = result.single()
-
- if record:
- table_info['source_table'] = record.get("source_table")
- # 检查script_name是否为空
- script_name = record.get("script_name")
- if not script_name:
- logger.warning(f"表 {table_name} 的关系中没有script_name属性,可能导致后续处理出错")
- table_info['script_name'] = script_name
-
- # 设置默认值,确保即使属性为空也有默认值
- table_info['script_type'] = record.get("script_type", "python") # 默认为python
- table_info['script_exec_mode'] = record.get("script_exec_mode", "append") # 默认为append
- else:
- logger.warning(f"未找到表 {table_name} 的关系信息")
- else:
- logger.warning(f"在Neo4j中找不到表 {table_name} 的信息")
- except Exception as e:
- logger.error(f"获取表 {table_name} 的信息时出错: {str(e)}")
- finally:
- driver.close()
-
- return table_info
- def process_dependencies(tables_info):
- """处理表间依赖关系,添加被动调度的表"""
- # 存储所有表信息的字典
- all_tables = {t['target_table']: t for t in tables_info}
- driver = get_neo4j_driver()
-
- try:
- with driver.session() as session:
- for table_name, table_info in list(all_tables.items()):
- if table_info.get('target_table_label') == 'DataModel':
- # 查询其依赖表
- query = """
- MATCH (dm {en_name: $table_name})-[:DERIVED_FROM]->(dep)
- RETURN dep.en_name AS dep_name, labels(dep) AS dep_labels,
- dep.status AS dep_status, dep.frequency AS dep_frequency
- """
- result = session.run(query, table_name=table_name)
-
- for record in result:
- dep_name = record.get("dep_name")
- dep_labels = record.get("dep_labels", [])
- dep_status = record.get("dep_status", True)
- dep_frequency = record.get("dep_frequency")
-
- # 处理未被直接调度的依赖表
- if dep_name and dep_name not in all_tables:
- logger.info(f"发现被动依赖表: {dep_name}, 标签: {dep_labels}")
-
- # 获取依赖表详细信息
- dep_info = get_table_info_from_neo4j(dep_name)
- dep_info['is_directly_schedule'] = False
-
- # 处理调度频率继承
- if not dep_info.get('default_update_frequency'):
- dep_info['default_update_frequency'] = table_info.get('default_update_frequency')
-
- all_tables[dep_name] = dep_info
- except Exception as e:
- logger.error(f"处理依赖关系时出错: {str(e)}")
- finally:
- driver.close()
-
- return list(all_tables.values())
- def filter_invalid_tables(tables_info):
- """过滤无效表及其依赖,使用NetworkX构建依赖图"""
- # 构建表名到索引的映射
- table_dict = {t['target_table']: i for i, t in enumerate(tables_info)}
-
- # 找出无效表
- invalid_tables = set()
- for table in tables_info:
- if table.get('target_table_status') is False:
- invalid_tables.add(table['target_table'])
- logger.info(f"表 {table['target_table']} 的状态为无效")
-
- # 构建依赖图
- G = nx.DiGraph()
-
- # 添加所有节点
- for table in tables_info:
- G.add_node(table['target_table'])
-
- # 查询并添加依赖边
- driver = get_neo4j_driver()
- try:
- with driver.session() as session:
- for table in tables_info:
- if table.get('target_table_label') == 'DataModel':
- query = """
- MATCH (source {en_name: $table_name})-[:DERIVED_FROM]->(target)
- RETURN target.en_name AS target_name
- """
- result = session.run(query, table_name=table['target_table'])
-
- for record in result:
- target_name = record.get("target_name")
- if target_name and target_name in table_dict:
- # 添加从目标到源的边,表示目标依赖于源
- G.add_edge(table['target_table'], target_name)
- logger.debug(f"添加依赖边: {table['target_table']} -> {target_name}")
- except Exception as e:
- logger.error(f"构建依赖图时出错: {str(e)}")
- finally:
- driver.close()
-
- # 找出依赖于无效表的所有表
- downstream_invalid = set()
- for invalid_table in invalid_tables:
- # 获取可从无效表到达的所有节点
- try:
- descendants = nx.descendants(G, invalid_table)
- downstream_invalid.update(descendants)
- logger.info(f"表 {invalid_table} 的下游无效表: {descendants}")
- except Exception as e:
- logger.error(f"处理表 {invalid_table} 的下游依赖时出错: {str(e)}")
-
- # 合并所有无效表
- all_invalid = invalid_tables.union(downstream_invalid)
- logger.info(f"总共 {len(all_invalid)} 个表被标记为无效: {all_invalid}")
-
- # 过滤出有效表
- valid_tables = [t for t in tables_info if t['target_table'] not in all_invalid]
- logger.info(f"过滤后保留 {len(valid_tables)} 个有效表")
-
- return valid_tables
- def prepare_dag_schedule(**kwargs):
- """准备DAG调度任务的主函数"""
- dag_run = kwargs.get('dag_run')
- logical_date = dag_run.logical_date
- local_logical_date = pendulum.instance(logical_date).in_timezone('Asia/Shanghai')
- exec_date = local_logical_date.strftime('%Y-%m-%d')
-
- # 检查是否是手动触发
- is_manual_trigger = dag_run.conf.get('MANUAL_TRIGGER', False) if dag_run.conf else False
- if is_manual_trigger:
- logger.info(f"【手动触发】当前DAG是手动触发的,使用传入的logical_date: {logical_date}")
-
- # 记录重要的时间参数
- logger.info(f"【时间参数】prepare_dag_schedule: exec_date={exec_date}, logical_date={logical_date}, local_logical_date={local_logical_date}")
- logger.info(f"开始准备执行日期 {exec_date} 的统一调度任务")
-
- # 1. 获取启用的表
- enabled_tables = get_enabled_tables()
- logger.info(f"从schedule_status表获取到 {len(enabled_tables)} 个启用的表")
-
- if not enabled_tables:
- logger.warning("没有找到启用的表,准备工作结束")
- return 0
-
- # 2. 获取表的详细信息
- tables_info = []
- for table_name in enabled_tables:
- table_info = get_table_info_from_neo4j(table_name)
- if table_info:
- tables_info.append(table_info)
-
- logger.info(f"成功获取 {len(tables_info)} 个表的详细信息")
-
- # 3. 处理依赖关系,添加被动调度的表
- enriched_tables = process_dependencies(tables_info)
- logger.info(f"处理依赖后,总共有 {len(enriched_tables)} 个表")
-
- # 4. 过滤无效表及其依赖
- valid_tables = filter_invalid_tables(enriched_tables)
- logger.info(f"过滤无效表后,最终有 {len(valid_tables)} 个有效表")
-
- # 已删除对 airflow_dag_schedule 表的写入操作
- # 只记录准备了多少个表
- logger.info(f"处理了 {len(valid_tables)} 个有效表")
-
- # 7. 生成执行计划数据
- resource_tasks = []
- model_tasks = []
-
- for table in valid_tables:
- if table.get('target_table_label') == 'DataResource':
- resource_tasks.append({
- "source_table": table.get('source_table'),
- "target_table": table['target_table'],
- "target_table_label": "DataResource",
- "script_name": table.get('script_name'),
- "script_exec_mode": table.get('script_exec_mode', 'append')
- })
- elif table.get('target_table_label') == 'DataModel':
- model_tasks.append({
- "source_table": table.get('source_table'),
- "target_table": table['target_table'],
- "target_table_label": "DataModel",
- "script_name": table.get('script_name'),
- "script_exec_mode": table.get('script_exec_mode', 'append')
- })
-
- # 获取依赖关系
- model_table_names = [t['target_table'] for t in model_tasks]
- dependencies = {}
-
- driver = get_neo4j_driver()
- try:
- with driver.session() as session:
- for table_name in model_table_names:
- query = """
- MATCH (source:DataModel {en_name: $table_name})-[:DERIVED_FROM]->(target)
- RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
- """
- result = session.run(query, table_name=table_name)
-
- deps = []
- for record in result:
- target = record.get("target")
- target_labels = record.get("target_labels", [])
-
- if target:
- table_type = next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
- deps.append({
- "table_name": target,
- "table_type": table_type
- })
-
- dependencies[table_name] = deps
- finally:
- driver.close()
-
- # 创建执行计划
- execution_plan = {
- "exec_date": exec_date,
- "logical_date": logical_date,
- "local_logical_date": local_logical_date,
- "resource_tasks": resource_tasks,
- "model_tasks": model_tasks,
- "dependencies": dependencies
- }
-
- # 将执行计划保存到XCom
- kwargs['ti'].xcom_push(key='execution_plan', value=execution_plan)
- logger.info(f"准备了执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
-
- return len(valid_tables)
- def check_execution_plan(**kwargs):
- """
- 检查执行计划是否存在且有效
- 返回False将阻止所有下游任务执行
- """
- dag_run = kwargs.get('dag_run')
- logical_date = dag_run.logical_date
- local_logical_date = pendulum.instance(logical_date).in_timezone('Asia/Shanghai')
- exec_date = local_logical_date.strftime('%Y-%m-%d')
-
- # 检查是否是手动触发
- is_manual_trigger = dag_run.conf.get('MANUAL_TRIGGER', False) if dag_run.conf else False
- if is_manual_trigger:
- logger.info(f"【手动触发】当前DAG是手动触发的,使用传入的logical_date: {logical_date}")
-
- # 记录重要的时间参数
- logger.info(f"【时间参数】check_execution_plan: exec_date={exec_date}, logical_date={logical_date}, local_logical_date={local_logical_date}")
- logger.info("检查数据库中的执行计划是否存在且有效")
-
- # 从数据库获取执行计划
- execution_plan = get_execution_plan_from_db(exec_date)
-
- # 检查是否成功获取到执行计划
- if not execution_plan:
- logger.error(f"未找到执行日期 {exec_date} 的执行计划")
- return False
-
- # 检查执行计划是否包含必要字段
- if "exec_date" not in execution_plan:
- logger.error("执行计划缺少exec_date字段")
- return False
-
- if not isinstance(execution_plan.get("resource_tasks", []), list):
- logger.error("执行计划的resource_tasks字段无效")
- return False
-
- if not isinstance(execution_plan.get("model_tasks", []), list):
- logger.error("执行计划的model_tasks字段无效")
- return False
-
- # 检查是否有任务数据
- resource_tasks = execution_plan.get("resource_tasks", [])
- model_tasks = execution_plan.get("model_tasks", [])
-
- if not resource_tasks and not model_tasks:
- logger.warning("执行计划不包含任何任务")
- # 如果没有任务,则阻止下游任务执行
- return False
-
- logger.info(f"执行计划验证成功: 包含 {len(resource_tasks)} 个资源任务和 {len(model_tasks)} 个模型任务")
- return True
- #############################################
- # 第二阶段: 数据处理阶段(Data Processing Phase)的函数
- #############################################
- def get_all_tasks(exec_date):
- """
- 获取所有需要执行的任务(DataResource和DataModel)
- 直接从执行计划获取任务信息,不再查询数据库
- """
- # 从数据库获取执行计划
- execution_plan = get_execution_plan_from_db(exec_date)
-
- if not execution_plan:
- logger.warning(f"未找到执行日期 {exec_date} 的执行计划")
- return [], []
-
- # 提取资源任务和模型任务
- resource_tasks = execution_plan.get("resource_tasks", [])
- model_tasks = execution_plan.get("model_tasks", [])
-
- logger.info(f"获取到 {len(resource_tasks)} 个资源任务和 {len(model_tasks)} 个模型任务")
- return resource_tasks, model_tasks
- def get_table_dependencies(table_names):
- """获取表之间的依赖关系"""
- driver = get_neo4j_driver()
- dependency_dict = {name: [] for name in table_names}
-
- try:
- with driver.session() as session:
- # 获取所有模型表之间的依赖关系
- query = """
- MATCH (source:DataModel)-[:DERIVED_FROM]->(target)
- WHERE source.en_name IN $table_names
- RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
- """
- result = session.run(query, table_names=table_names)
-
- for record in result:
- source = record.get("source")
- target = record.get("target")
- target_labels = record.get("target_labels", [])
-
- if source and target:
- # 将目标表添加到源表的依赖列表中
- dependency_dict[source].append({
- "table_name": target,
- "table_type": next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
- })
- logger.debug(f"依赖关系: {source} 依赖于 {target}")
- except Exception as e:
- logger.error(f"从Neo4j获取依赖关系时出错: {str(e)}")
- finally:
- driver.close()
-
- return dependency_dict
- def create_execution_plan(**kwargs):
- """准备执行计划的函数,使用从准备阶段传递的数据"""
- try:
- dag_run = kwargs.get('dag_run')
- logical_date = dag_run.logical_date
- local_logical_date = pendulum.instance(logical_date).in_timezone('Asia/Shanghai')
- exec_date = local_logical_date.strftime('%Y-%m-%d')
-
- # 检查是否是手动触发
- is_manual_trigger = dag_run.conf.get('MANUAL_TRIGGER', False) if dag_run.conf else False
- if is_manual_trigger:
- logger.info(f"【手动触发】当前DAG是手动触发的,使用传入的logical_date: {logical_date}")
-
- # 记录重要的时间参数
- logger.info(f"【时间参数】create_execution_plan: exec_date={exec_date}, logical_date={logical_date}, local_logical_date={local_logical_date}")
-
- # 从XCom获取执行计划
- execution_plan = kwargs['ti'].xcom_pull(task_ids='prepare_phase.prepare_dag_schedule', key='execution_plan')
-
- # 如果找不到执行计划,则从数据库获取
- if not execution_plan:
- # 获取执行日期
- logger.info(f"未找到执行计划,从数据库获取。使用执行日期: {exec_date}")
-
- # 获取所有任务
- resource_tasks, model_tasks = get_all_tasks(exec_date)
-
- if not resource_tasks and not model_tasks:
- logger.warning(f"执行日期 {exec_date} 没有找到任务")
- return 0
-
- # 为所有模型表获取依赖关系
- model_table_names = [task["target_table"] for task in model_tasks]
- dependencies = get_table_dependencies(model_table_names)
-
- # 创建执行计划
- new_execution_plan = {
- "exec_date": exec_date,
- "resource_tasks": resource_tasks,
- "model_tasks": model_tasks,
- "dependencies": dependencies
- }
-
- # 保存执行计划到XCom
- kwargs['ti'].xcom_push(key='execution_plan', value=new_execution_plan)
- logger.info(f"创建新的执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
-
- return new_execution_plan
-
- logger.info(f"成功获取执行计划")
- return execution_plan
- except Exception as e:
- logger.error(f"创建执行计划时出错: {str(e)}")
- # 返回空执行计划
- empty_plan = {
- "exec_date": get_today_date(),
- "resource_tasks": [],
- "model_tasks": [],
- "dependencies": {}
- }
-
- return empty_plan
- def process_resource(target_table, script_name, script_exec_mode, exec_date):
- """处理单个资源表"""
- task_id = f"resource_{target_table}"
- logger.info(f"===== 开始执行 {task_id} =====")
- logger.info(f"执行资源表 {target_table} 的脚本 {script_name}")
-
- # 确保exec_date是字符串
- if not isinstance(exec_date, str):
- exec_date = str(exec_date)
- logger.info(f"将exec_date转换为字符串: {exec_date}")
-
- try:
- # 使用新的函数执行脚本,不依赖数据库
- logger.info(f"调用execute_python_script: target_table={target_table}, script_name={script_name}")
- result = execute_python_script(
- target_table=target_table,
- script_name=script_name,
- script_exec_mode=script_exec_mode,
- exec_date=exec_date
- )
- logger.info(f"资源表 {target_table} 处理完成,结果: {result}")
- return result
- except Exception as e:
- logger.error(f"处理资源表 {target_table} 时出错: {str(e)}")
- import traceback
- logger.error(traceback.format_exc())
- logger.info(f"===== 结束执行 {task_id} (失败) =====")
- return False
- finally:
- logger.info(f"===== 结束执行 {task_id} =====")
- def process_model(target_table, script_name, script_exec_mode, exec_date):
- """处理单个模型表"""
- task_id = f"model_{target_table}"
- logger.info(f"===== 开始执行 {task_id} =====")
- logger.info(f"执行模型表 {target_table} 的脚本 {script_name}")
-
- # 确保exec_date是字符串
- if not isinstance(exec_date, str):
- exec_date = str(exec_date)
- logger.info(f"将exec_date转换为字符串: {exec_date}")
-
- try:
- # 使用新的函数执行脚本,不依赖数据库
- logger.info(f"调用execute_python_script: target_table={target_table}, script_name={script_name}")
- result = execute_python_script(
- target_table=target_table,
- script_name=script_name,
- script_exec_mode=script_exec_mode,
- exec_date=exec_date
- )
- logger.info(f"模型表 {target_table} 处理完成,结果: {result}")
- return result
- except Exception as e:
- logger.error(f"处理模型表 {target_table} 时出错: {str(e)}")
- import traceback
- logger.error(traceback.format_exc())
- logger.info(f"===== 结束执行 {task_id} (失败) =====")
- return False
- finally:
- logger.info(f"===== 结束执行 {task_id} =====")
- # 添加新函数,用于从数据库获取执行计划
- def get_execution_plan_from_db(ds):
- """
- 从数据库airflow_exec_plans表中获取执行计划
-
- 参数:
- ds (str): 执行日期,格式为'YYYY-MM-DD'
-
- 返回:
- dict: 执行计划字典,如果找不到则返回None
- """
- # 记录输入参数详细信息
- if isinstance(ds, datetime):
- if ds.tzinfo:
- logger.debug(f"【执行日期】get_execution_plan_from_db接收到datetime对象: {ds}, 带时区: {ds.tzinfo}")
- else:
- logger.debug(f"【执行日期】get_execution_plan_from_db接收到datetime对象: {ds}, 无时区")
- else:
- logger.debug(f"【执行日期】get_execution_plan_from_db接收到: {ds}, 类型: {type(ds)}")
-
- logger.info(f"尝试从数据库获取执行日期 {ds} 的执行计划")
- conn = get_pg_conn()
- cursor = conn.cursor()
- execution_plan = None
-
- try:
- # 查询条件a: 当前日期=表的exec_date,如果有多条记录,取insert_time最大的一条
- cursor.execute("""
- SELECT plan, run_id, insert_time
- FROM airflow_exec_plans
- WHERE dag_id = 'dag_dataops_pipeline_prepare_scheduler' AND exec_date = %s
- ORDER BY insert_time DESC
- LIMIT 1
- """, (ds,))
- result = cursor.fetchone()
-
- if result:
- # 获取计划、run_id和insert_time
- plan_json, run_id, insert_time = result
- logger.info(f"找到当前日期 exec_date={ds} 的执行计划记录,run_id: {run_id}, insert_time: {insert_time}")
-
- # 处理plan_json可能已经是dict的情况
- if isinstance(plan_json, dict):
- execution_plan = plan_json
- else:
- execution_plan = json.loads(plan_json)
-
- return execution_plan
-
- # 查询条件b: 找不到当前日期的记录,查找exec_date<当前ds的最新记录
- logger.info(f"未找到当前日期 exec_date={ds} 的执行计划记录,尝试查找历史记录")
- cursor.execute("""
- SELECT plan, run_id, insert_time, exec_date
- FROM airflow_exec_plans
- WHERE dag_id = 'dag_dataops_pipeline_prepare_scheduler' AND exec_date < %s
- ORDER BY exec_date DESC, insert_time DESC
- LIMIT 1
- """, (ds,))
- result = cursor.fetchone()
-
- if result:
- # 获取计划、run_id、insert_time和exec_date
- plan_json, run_id, insert_time, plan_ds = result
- logger.info(f"找到历史执行计划记录,exec_date: {plan_ds}, run_id: {run_id}, insert_time: {insert_time}")
-
- # 处理plan_json可能已经是dict的情况
- if isinstance(plan_json, dict):
- execution_plan = plan_json
- else:
- execution_plan = json.loads(plan_json)
-
- return execution_plan
-
- # 找不到任何执行计划记录
- logger.error(f"在数据库中未找到任何执行计划记录,当前DAG exec_date={ds}")
- return None
-
- except Exception as e:
- logger.error(f"从数据库获取执行计划时出错: {str(e)}")
- import traceback
- logger.error(traceback.format_exc())
- return None
- finally:
- cursor.close()
- conn.close()
- # 创建DAG
- with DAG(
- "dag_dataops_pipeline_data_scheduler",
- start_date=datetime(2024, 1, 1),
- schedule_interval="@daily",
- catchup=False,
- default_args={
- 'owner': 'airflow',
- 'depends_on_past': False,
- 'email_on_failure': False,
- 'email_on_retry': False,
- 'retries': 1,
- 'retry_delay': timedelta(minutes=5)
- },
- params={
- 'MANUAL_TRIGGER': False,
- },
- # 添加DAG级别参数,确保任务运行时有正确的环境
- # params={
- # "scripts_path": SCRIPTS_BASE_PATH,
- # "airflow_base_path": os.path.dirname(os.path.dirname(__file__))
- # }
- ) as dag:
-
- # 记录DAG实例化时的重要信息
- now = datetime.now()
- now_with_tz = now.replace(tzinfo=pytz.timezone('Asia/Shanghai'))
- default_exec_date = get_today_date()
- logger.info(f"【DAG初始化】当前时间: {now} / {now_with_tz}, 默认执行日期: {default_exec_date}")
-
- #############################################
- # 阶段1: 准备阶段(Prepare Phase)
- #############################################
- with TaskGroup("prepare_phase") as prepare_group:
- # 任务开始标记
- start_preparation = EmptyOperator(
- task_id="start_preparation"
- )
-
- # 准备调度任务
- prepare_task = PythonOperator(
- task_id="prepare_dag_schedule",
- python_callable=prepare_dag_schedule,
- provide_context=True
- )
-
- # 验证执行计划有效性
- check_plan = ShortCircuitOperator(
- task_id="check_execution_plan",
- python_callable=check_execution_plan,
- provide_context=True
- )
-
- # 创建执行计划
- create_plan = PythonOperator(
- task_id="create_execution_plan",
- python_callable=create_execution_plan,
- provide_context=True
- )
-
- # 准备完成标记
- preparation_completed = EmptyOperator(
- task_id="preparation_completed"
- )
-
- # 设置任务依赖
- start_preparation >> prepare_task >> check_plan >> create_plan >> preparation_completed
-
- #############################################
- # 阶段2: 数据处理阶段(Data Processing Phase)
- #############################################
- with TaskGroup("data_processing_phase") as data_group:
- # 数据处理开始任务
- start_processing = EmptyOperator(
- task_id="start_processing"
- )
-
- # 数据处理完成标记
- processing_completed = EmptyOperator(
- task_id="processing_completed",
- trigger_rule="none_failed_min_one_success" # 只要有一个任务成功且没有失败的任务就标记为完成
- )
-
- # 设置依赖
- start_processing >> processing_completed
-
-
- # 设置三个阶段之间的依赖关系
- prepare_group >> data_group
- # 尝试从数据库获取执行计划
- try:
- # 获取当前DAG的执行日期
- exec_date = get_today_date() # 使用当天日期作为默认值
- logger.info(f"当前DAG执行日期 ds={exec_date},尝试从数据库获取执行计划")
-
- # 记录实际使用的执行日期的时区信息和原始格式
- if isinstance(exec_date, datetime):
- logger.info(f"【执行日期详情】类型: datetime, 时区: {exec_date.tzinfo}, 值: {exec_date}")
- else:
- logger.info(f"【执行日期详情】类型: {type(exec_date)}, 值: {exec_date}")
-
- # 从数据库获取执行计划
- execution_plan = get_execution_plan_from_db(exec_date)
-
- # 检查是否成功获取到执行计划
- if execution_plan is None:
- error_msg = f"无法从数据库获取有效的执行计划,当前DAG exec_date={exec_date}"
- logger.error(error_msg)
- # 使用全局变量而不是异常来强制DAG失败
- raise ValueError(error_msg)
-
- # 如果获取到了执行计划,处理它
- logger.info(f"成功从数据库获取执行计划")
-
- # 提取信息
- exec_date = execution_plan.get("exec_date", exec_date)
- resource_tasks = execution_plan.get("resource_tasks", [])
- model_tasks = execution_plan.get("model_tasks", [])
- dependencies = execution_plan.get("dependencies", {})
-
- logger.info(f"执行计划: exec_date={exec_date}, resource_tasks数量={len(resource_tasks)}, model_tasks数量={len(model_tasks)}")
-
- # 如果执行计划为空(没有任务),也应该失败
- if not resource_tasks and not model_tasks:
- error_msg = f"执行计划中没有任何任务,当前DAG exec_date={exec_date}"
- logger.error(error_msg)
- raise ValueError(error_msg)
-
- # 动态创建处理任务
- task_dict = {}
-
- # 1. 创建资源表任务
- for task_info in resource_tasks:
- table_name = task_info["target_table"]
- script_name = task_info["script_name"]
- exec_mode = task_info.get("script_exec_mode", "append")
-
- # 创建安全的任务ID
- safe_table_name = table_name.replace(".", "_").replace("-", "_")
-
- # 确保所有任务都是data_processing_phase的一部分
- with data_group:
- resource_task = PythonOperator(
- task_id=f"resource_{safe_table_name}",
- python_callable=process_resource,
- op_kwargs={
- "target_table": table_name,
- "script_name": script_name,
- "script_exec_mode": exec_mode,
- # 确保使用字符串而不是可能是默认(非字符串)格式的执行日期
- "exec_date": str(exec_date)
- },
- retries=TASK_RETRY_CONFIG["retries"],
- retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"])
- )
-
- # 将任务添加到字典
- task_dict[table_name] = resource_task
-
- # 设置与start_processing的依赖
- start_processing >> resource_task
-
- # 创建有向图,用于检测模型表之间的依赖关系
- G = nx.DiGraph()
-
- # 将所有模型表添加为节点
- for task_info in model_tasks:
- table_name = task_info["target_table"]
- G.add_node(table_name)
-
- # 添加模型表之间的依赖边
- for source, deps in dependencies.items():
- for dep in deps:
- if dep.get("table_type") == "DataModel" and dep.get("table_name") in G.nodes():
- G.add_edge(dep.get("table_name"), source) # 依赖方向:依赖项 -> 目标
-
- # 检测循环依赖并处理
- try:
- cycles = list(nx.simple_cycles(G))
- if cycles:
- logger.warning(f"检测到循环依赖: {cycles}")
- for cycle in cycles:
- G.remove_edge(cycle[-1], cycle[0])
- logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
- except Exception as e:
- logger.error(f"检测循环依赖时出错: {str(e)}")
-
- # 生成拓扑排序,确定执行顺序
- execution_order = []
- try:
- execution_order = list(nx.topological_sort(G))
- except Exception as e:
- logger.error(f"生成拓扑排序失败: {str(e)}")
- execution_order = [task_info["target_table"] for task_info in model_tasks]
-
- # 2. 按拓扑排序顺序创建模型表任务
- for table_name in execution_order:
- task_info = next((t for t in model_tasks if t["target_table"] == table_name), None)
- if not task_info:
- continue
-
- script_name = task_info["script_name"]
- exec_mode = task_info.get("script_exec_mode", "append")
-
- # 创建安全的任务ID
- safe_table_name = table_name.replace(".", "_").replace("-", "_")
-
- # 确保所有任务都是data_processing_phase的一部分
- with data_group:
- model_task = PythonOperator(
- task_id=f"model_{safe_table_name}",
- python_callable=process_model,
- op_kwargs={
- "target_table": table_name,
- "script_name": script_name,
- "script_exec_mode": exec_mode,
- # 确保使用字符串而不是可能是默认(非字符串)格式的执行日期
- "exec_date": str(exec_date)
- },
- retries=TASK_RETRY_CONFIG["retries"],
- retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"])
- )
-
- # 将任务添加到字典
- task_dict[table_name] = model_task
-
- # 设置依赖关系
- deps = dependencies.get(table_name, [])
- has_dependency = False
-
- # 处理模型表之间的依赖
- for dep in deps:
- dep_table = dep.get("table_name")
- dep_type = dep.get("table_type")
-
- if dep_table in task_dict:
- task_dict[dep_table] >> model_task
- has_dependency = True
- logger.info(f"设置依赖: {dep_table} >> {table_name}")
-
- # 如果没有依赖,则依赖于start_processing和资源表任务
- if not has_dependency:
- # 从start_processing任务直接连接
- start_processing >> model_task
-
- # 同时从所有资源表任务连接
- resource_count = 0
- for resource_table in resource_tasks:
- if resource_count >= 5: # 最多设置5个依赖
- break
-
- resource_name = resource_table["target_table"]
- if resource_name in task_dict:
- task_dict[resource_name] >> model_task
- resource_count += 1
-
- # 找出所有终端任务(没有下游依赖的任务)
- terminal_tasks = []
-
- # 检查所有模型表任务
- for table_name in execution_order:
- # 检查是否有下游任务
- has_downstream = False
- for source, deps in dependencies.items():
- if source == table_name: # 跳过自身
- continue
- for dep in deps:
- if dep.get("table_name") == table_name:
- has_downstream = True
- break
- if has_downstream:
- break
-
- # 如果没有下游任务,添加到终端任务列表
- if not has_downstream and table_name in task_dict:
- terminal_tasks.append(table_name)
-
- # 如果没有模型表任务,将所有资源表任务视为终端任务
- if not model_tasks and resource_tasks:
- terminal_tasks = [task["target_table"] for task in resource_tasks]
- logger.info(f"没有模型表任务,将所有资源表任务视为终端任务: {terminal_tasks}")
-
- # 如果既没有模型表任务也没有资源表任务,已有默认依赖链
- if not terminal_tasks:
- logger.warning("未找到任何任务,使用默认依赖链")
- else:
- # 将所有终端任务连接到完成标记
- for table_name in terminal_tasks:
- if table_name in task_dict:
- task_dict[table_name] >> processing_completed
- logger.info(f"设置终端任务: {table_name} >> processing_completed")
- except Exception as e:
- logger.error(f"加载执行计划时出错: {str(e)}")
- import traceback
- logger.error(traceback.format_exc())
- logger.info(f"DAG dag_dataops_pipeline_data_scheduler 定义完成")
|