123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149 |
- # dag_dataops_unified_scheduler.py
- # 合并了prepare, data和summary三个DAG的功能
- from airflow import DAG
- from airflow.operators.python import PythonOperator
- from airflow.operators.empty import EmptyOperator
- from airflow.utils.task_group import TaskGroup
- from datetime import datetime, timedelta, date
- import logging
- import networkx as nx
- import json
- from decimal import Decimal
- from common import (
- get_pg_conn,
- get_neo4j_driver,
- execute_with_monitoring,
- get_today_date
- )
- from config import TASK_RETRY_CONFIG, PG_CONFIG, NEO4J_CONFIG
- # 创建日志记录器
- logger = logging.getLogger(__name__)
- # 添加日期序列化器
- def json_serial(obj):
- """将日期对象序列化为ISO格式字符串的JSON序列化器"""
- if isinstance(obj, (datetime, date)):
- return obj.isoformat()
- raise TypeError(f"类型 {type(obj)} 不能被序列化为JSON")
- # 添加自定义JSON编码器解决Decimal序列化问题
- class DecimalEncoder(json.JSONEncoder):
- def default(self, obj):
- if isinstance(obj, Decimal):
- return float(obj)
- # 处理日期类型
- elif isinstance(obj, (datetime, date)):
- return obj.isoformat()
- # 让父类处理其他类型
- return super(DecimalEncoder, self).default(obj)
- #############################################
- # 第一阶段: 准备阶段(Prepare Phase)的函数
- #############################################
- def get_enabled_tables():
- """获取所有启用的表"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- cursor.execute("""
- SELECT owner_id, table_name
- FROM schedule_status
- WHERE schedule_is_enabled = TRUE
- """)
- result = cursor.fetchall()
- return [row[1] for row in result] # 只返回表名
- except Exception as e:
- logger.error(f"获取启用表失败: {str(e)}")
- return []
- finally:
- cursor.close()
- conn.close()
- def check_table_directly_subscribed(table_name):
- """检查表是否在schedule_status表中直接订阅"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- cursor.execute("""
- SELECT schedule_is_enabled
- FROM schedule_status
- WHERE table_name = %s
- """, (table_name,))
- result = cursor.fetchone()
- return result and result[0] is True
- except Exception as e:
- logger.error(f"检查表订阅状态失败: {str(e)}")
- return False
- finally:
- cursor.close()
- conn.close()
- def get_table_info_from_neo4j(table_name):
- """从Neo4j获取表的详细信息"""
- driver = get_neo4j_driver()
- # 检查表是否直接订阅
- is_directly_schedule = check_table_directly_subscribed(table_name)
- table_info = {
- 'target_table': table_name,
- 'is_directly_schedule': is_directly_schedule, # 初始值设为True,从schedule_status表获取
- }
-
- try:
- with driver.session() as session:
- # 查询表标签和状态
- query_table = """
- MATCH (t {en_name: $table_name})
- RETURN labels(t) AS labels, t.status AS status, t.frequency AS frequency
- """
- result = session.run(query_table, table_name=table_name)
- record = result.single()
-
- if record:
- labels = record.get("labels", [])
- table_info['target_table_label'] = [label for label in labels if label in ["DataResource", "DataModel", "DataSource"]][0] if labels else None
- table_info['target_table_status'] = record.get("status", True) # 默认为True
- table_info['default_update_frequency'] = record.get("frequency")
-
- # 根据标签类型查询关系和脚本信息
- if "DataResource" in labels:
- query_rel = """
- MATCH (target {en_name: $table_name})-[rel:ORIGINATES_FROM]->(source)
- RETURN source.en_name AS source_table, rel.script_name AS script_name,
- rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
- """
- elif "DataModel" in labels:
- query_rel = """
- MATCH (target {en_name: $table_name})-[rel:DERIVED_FROM]->(source)
- RETURN source.en_name AS source_table, rel.script_name AS script_name,
- rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
- """
- else:
- logger.warning(f"表 {table_name} 不是DataResource或DataModel类型")
- return table_info
-
- result = session.run(query_rel, table_name=table_name)
- record = result.single()
-
- if record:
- table_info['source_table'] = record.get("source_table")
- # 检查script_name是否为空
- script_name = record.get("script_name")
- if not script_name:
- logger.warning(f"表 {table_name} 的关系中没有script_name属性,可能导致后续处理出错")
- table_info['script_name'] = script_name
-
- # 设置默认值,确保即使属性为空也有默认值
- table_info['script_type'] = record.get("script_type", "python") # 默认为python
- table_info['script_exec_mode'] = record.get("script_exec_mode", "append") # 默认为append
- else:
- logger.warning(f"未找到表 {table_name} 的关系信息")
- else:
- logger.warning(f"在Neo4j中找不到表 {table_name} 的信息")
- except Exception as e:
- logger.error(f"获取表 {table_name} 的信息时出错: {str(e)}")
- finally:
- driver.close()
-
- return table_info
- def process_dependencies(tables_info):
- """处理表间依赖关系,添加被动调度的表"""
- # 存储所有表信息的字典
- all_tables = {t['target_table']: t for t in tables_info}
- driver = get_neo4j_driver()
-
- try:
- with driver.session() as session:
- for table_name, table_info in list(all_tables.items()):
- if table_info.get('target_table_label') == 'DataModel':
- # 查询其依赖表
- query = """
- MATCH (dm {en_name: $table_name})-[:DERIVED_FROM]->(dep)
- RETURN dep.en_name AS dep_name, labels(dep) AS dep_labels,
- dep.status AS dep_status, dep.frequency AS dep_frequency
- """
- result = session.run(query, table_name=table_name)
-
- for record in result:
- dep_name = record.get("dep_name")
- dep_labels = record.get("dep_labels", [])
- dep_status = record.get("dep_status", True)
- dep_frequency = record.get("dep_frequency")
-
- # 处理未被直接调度的依赖表
- if dep_name and dep_name not in all_tables:
- logger.info(f"发现被动依赖表: {dep_name}, 标签: {dep_labels}")
-
- # 获取依赖表详细信息
- dep_info = get_table_info_from_neo4j(dep_name)
- dep_info['is_directly_schedule'] = False
-
- # 处理调度频率继承
- if not dep_info.get('default_update_frequency'):
- dep_info['default_update_frequency'] = table_info.get('default_update_frequency')
-
- all_tables[dep_name] = dep_info
- except Exception as e:
- logger.error(f"处理依赖关系时出错: {str(e)}")
- finally:
- driver.close()
-
- return list(all_tables.values())
- def filter_invalid_tables(tables_info):
- """过滤无效表及其依赖,使用NetworkX构建依赖图"""
- # 构建表名到索引的映射
- table_dict = {t['target_table']: i for i, t in enumerate(tables_info)}
-
- # 找出无效表
- invalid_tables = set()
- for table in tables_info:
- if table.get('target_table_status') is False:
- invalid_tables.add(table['target_table'])
- logger.info(f"表 {table['target_table']} 的状态为无效")
-
- # 构建依赖图
- G = nx.DiGraph()
-
- # 添加所有节点
- for table in tables_info:
- G.add_node(table['target_table'])
-
- # 查询并添加依赖边
- driver = get_neo4j_driver()
- try:
- with driver.session() as session:
- for table in tables_info:
- if table.get('target_table_label') == 'DataModel':
- query = """
- MATCH (source {en_name: $table_name})-[:DERIVED_FROM]->(target)
- RETURN target.en_name AS target_name
- """
- result = session.run(query, table_name=table['target_table'])
-
- for record in result:
- target_name = record.get("target_name")
- if target_name and target_name in table_dict:
- # 添加从目标到源的边,表示目标依赖于源
- G.add_edge(table['target_table'], target_name)
- logger.debug(f"添加依赖边: {table['target_table']} -> {target_name}")
- except Exception as e:
- logger.error(f"构建依赖图时出错: {str(e)}")
- finally:
- driver.close()
-
- # 找出依赖于无效表的所有表
- downstream_invalid = set()
- for invalid_table in invalid_tables:
- # 获取可从无效表到达的所有节点
- try:
- descendants = nx.descendants(G, invalid_table)
- downstream_invalid.update(descendants)
- logger.info(f"表 {invalid_table} 的下游无效表: {descendants}")
- except Exception as e:
- logger.error(f"处理表 {invalid_table} 的下游依赖时出错: {str(e)}")
-
- # 合并所有无效表
- all_invalid = invalid_tables.union(downstream_invalid)
- logger.info(f"总共 {len(all_invalid)} 个表被标记为无效: {all_invalid}")
-
- # 过滤出有效表
- valid_tables = [t for t in tables_info if t['target_table'] not in all_invalid]
- logger.info(f"过滤后保留 {len(valid_tables)} 个有效表")
-
- return valid_tables
- def write_to_airflow_dag_schedule(exec_date, tables_info):
- """将表信息写入airflow_dag_schedule表"""
- conn = get_pg_conn()
- cursor = conn.cursor()
-
- try:
- # 清理当日数据,避免重复
- cursor.execute("""
- DELETE FROM airflow_dag_schedule WHERE exec_date = %s
- """, (exec_date,))
- logger.info(f"已清理执行日期 {exec_date} 的现有数据")
-
- # 批量插入新数据
- inserted_count = 0
- for table in tables_info:
- cursor.execute("""
- INSERT INTO airflow_dag_schedule (
- exec_date, source_table, target_table, target_table_label,
- target_table_status, is_directly_schedule, default_update_frequency,
- script_name, script_type, script_exec_mode
- ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
- """, (
- exec_date,
- table.get('source_table'),
- table['target_table'],
- table.get('target_table_label'),
- table.get('target_table_status', True),
- table.get('is_directly_schedule', False),
- table.get('default_update_frequency'),
- table.get('script_name'),
- table.get('script_type', 'python'),
- table.get('script_exec_mode', 'append')
- ))
- inserted_count += 1
-
- conn.commit()
- logger.info(f"成功插入 {inserted_count} 条记录到 airflow_dag_schedule 表")
- return inserted_count
- except Exception as e:
- logger.error(f"写入 airflow_dag_schedule 表时出错: {str(e)}")
- conn.rollback()
- # 重新抛出异常,确保错误被正确传播
- raise
- finally:
- cursor.close()
- conn.close()
- def prepare_dag_schedule(**kwargs):
- """准备DAG调度任务的主函数"""
- exec_date = kwargs.get('ds') or get_today_date()
- logger.info(f"开始准备执行日期 {exec_date} 的统一调度任务")
-
- # 1. 获取启用的表
- enabled_tables = get_enabled_tables()
- logger.info(f"从schedule_status表获取到 {len(enabled_tables)} 个启用的表")
-
- if not enabled_tables:
- logger.warning("没有找到启用的表,准备工作结束")
- return 0
-
- # 2. 获取表的详细信息
- tables_info = []
- for table_name in enabled_tables:
- table_info = get_table_info_from_neo4j(table_name)
- if table_info:
- tables_info.append(table_info)
-
- logger.info(f"成功获取 {len(tables_info)} 个表的详细信息")
-
- # 3. 处理依赖关系,添加被动调度的表
- enriched_tables = process_dependencies(tables_info)
- logger.info(f"处理依赖后,总共有 {len(enriched_tables)} 个表")
-
- # 4. 过滤无效表及其依赖
- valid_tables = filter_invalid_tables(enriched_tables)
- logger.info(f"过滤无效表后,最终有 {len(valid_tables)} 个有效表")
-
- # 5. 写入airflow_dag_schedule表
- inserted_count = write_to_airflow_dag_schedule(exec_date, valid_tables)
-
- # 6. 检查插入操作是否成功,如果失败则抛出异常
- if inserted_count == 0 and valid_tables:
- error_msg = f"插入操作失败,无记录被插入到airflow_dag_schedule表,但有{len(valid_tables)}个有效表需要处理"
- logger.error(error_msg)
- raise Exception(error_msg)
-
- # 7. 生成执行计划数据
- resource_tasks = []
- model_tasks = []
-
- for table in valid_tables:
- if table.get('target_table_label') == 'DataResource':
- resource_tasks.append({
- "source_table": table.get('source_table'),
- "target_table": table['target_table'],
- "target_table_label": "DataResource",
- "script_name": table.get('script_name'),
- "script_exec_mode": table.get('script_exec_mode', 'append')
- })
- elif table.get('target_table_label') == 'DataModel':
- model_tasks.append({
- "source_table": table.get('source_table'),
- "target_table": table['target_table'],
- "target_table_label": "DataModel",
- "script_name": table.get('script_name'),
- "script_exec_mode": table.get('script_exec_mode', 'append')
- })
-
- # 获取依赖关系
- model_table_names = [t['target_table'] for t in model_tasks]
- dependencies = {}
-
- driver = get_neo4j_driver()
- try:
- with driver.session() as session:
- for table_name in model_table_names:
- query = """
- MATCH (source:DataModel {en_name: $table_name})-[:DERIVED_FROM]->(target)
- RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
- """
- result = session.run(query, table_name=table_name)
-
- deps = []
- for record in result:
- target = record.get("target")
- target_labels = record.get("target_labels", [])
-
- if target:
- table_type = next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
- deps.append({
- "table_name": target,
- "table_type": table_type
- })
-
- dependencies[table_name] = deps
- finally:
- driver.close()
-
- # 创建执行计划
- execution_plan = {
- "exec_date": exec_date,
- "resource_tasks": resource_tasks,
- "model_tasks": model_tasks,
- "dependencies": dependencies
- }
-
- # 将执行计划保存到XCom
- kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(execution_plan, default=json_serial))
- logger.info(f"准备了执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
-
- return inserted_count
- #############################################
- # 第二阶段: 数据处理阶段(Data Processing Phase)的函数
- #############################################
- def get_latest_date():
- """获取数据库中包含记录的最近日期"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- cursor.execute("""
- SELECT DISTINCT exec_date
- FROM airflow_dag_schedule
- ORDER BY exec_date DESC
- LIMIT 1
- """)
- result = cursor.fetchone()
- if result:
- latest_date = result[0]
- logger.info(f"找到最近的包含记录的日期: {latest_date}")
- return latest_date
- else:
- logger.warning("未找到包含记录的日期,将使用当前日期")
- return get_today_date()
- except Exception as e:
- logger.error(f"查找最近日期时出错: {str(e)}")
- return get_today_date()
- finally:
- cursor.close()
- conn.close()
- def get_all_tasks(exec_date):
- """获取所有需要执行的任务(DataResource和DataModel)"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- # 查询所有资源表任务
- cursor.execute("""
- SELECT source_table, target_table, target_table_label, script_name, script_exec_mode
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND target_table_label = 'DataResource' AND script_name IS NOT NULL
- """, (exec_date,))
- resource_results = cursor.fetchall()
-
- # 查询所有模型表任务
- cursor.execute("""
- SELECT source_table, target_table, target_table_label, script_name, script_exec_mode
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND target_table_label = 'DataModel' AND script_name IS NOT NULL
- """, (exec_date,))
- model_results = cursor.fetchall()
-
- # 整理资源表信息
- resource_tasks = []
- for row in resource_results:
- source_table, target_table, target_table_label, script_name, script_exec_mode = row
- if script_name: # 确保脚本名称不为空
- resource_tasks.append({
- "source_table": source_table,
- "target_table": target_table,
- "target_table_label": target_table_label,
- "script_name": script_name,
- "script_exec_mode": script_exec_mode or "append"
- })
-
- # 整理模型表信息
- model_tasks = []
- for row in model_results:
- source_table, target_table, target_table_label, script_name, script_exec_mode = row
- if script_name: # 确保脚本名称不为空
- model_tasks.append({
- "source_table": source_table,
- "target_table": target_table,
- "target_table_label": target_table_label,
- "script_name": script_name,
- "script_exec_mode": script_exec_mode or "append"
- })
-
- logger.info(f"获取到 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
- return resource_tasks, model_tasks
- except Exception as e:
- logger.error(f"获取任务信息时出错: {str(e)}")
- return [], []
- finally:
- cursor.close()
- conn.close()
- def get_table_dependencies_for_data_phase(table_names):
- """获取表之间的依赖关系"""
- driver = get_neo4j_driver()
- dependency_dict = {name: [] for name in table_names}
-
- try:
- with driver.session() as session:
- # 获取所有模型表之间的依赖关系
- query = """
- MATCH (source:DataModel)-[:DERIVED_FROM]->(target)
- WHERE source.en_name IN $table_names
- RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
- """
- result = session.run(query, table_names=table_names)
-
- for record in result:
- source = record.get("source")
- target = record.get("target")
- target_labels = record.get("target_labels", [])
-
- if source and target:
- # 将目标表添加到源表的依赖列表中
- dependency_dict[source].append({
- "table_name": target,
- "table_type": next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
- })
- logger.debug(f"依赖关系: {source} 依赖于 {target}")
- except Exception as e:
- logger.error(f"从Neo4j获取依赖关系时出错: {str(e)}")
- finally:
- driver.close()
-
- return dependency_dict
- def create_execution_plan(**kwargs):
- """准备执行计划的函数,使用从准备阶段传递的数据"""
- try:
- # 从XCom获取执行计划
- execution_plan = kwargs['ti'].xcom_pull(task_ids='prepare_phase.prepare_dag_schedule', key='execution_plan')
-
- # 如果找不到执行计划,则从数据库获取
- if not execution_plan:
- # 获取执行日期
- exec_date = get_latest_date()
- logger.info(f"未找到执行计划,从数据库获取。使用执行日期: {exec_date}")
-
- # 获取所有任务
- resource_tasks, model_tasks = get_all_tasks(exec_date)
-
- if not resource_tasks and not model_tasks:
- logger.warning(f"执行日期 {exec_date} 没有找到任务")
- return 0
-
- # 为所有模型表获取依赖关系
- model_table_names = [task["target_table"] for task in model_tasks]
- dependencies = get_table_dependencies_for_data_phase(model_table_names)
-
- # 创建执行计划
- new_execution_plan = {
- "exec_date": exec_date,
- "resource_tasks": resource_tasks,
- "model_tasks": model_tasks,
- "dependencies": dependencies
- }
-
- # 保存执行计划
- kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(new_execution_plan, default=json_serial))
- logger.info(f"创建新的执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
-
- return json.dumps(new_execution_plan, default=json_serial)
-
- logger.info(f"成功获取执行计划")
- return execution_plan
- except Exception as e:
- logger.error(f"创建执行计划时出错: {str(e)}")
- # 返回空执行计划
- empty_plan = {
- "exec_date": get_today_date(),
- "resource_tasks": [],
- "model_tasks": [],
- "dependencies": {}
- }
- return json.dumps(empty_plan, default=json_serial)
- def process_resource(target_table, script_name, script_exec_mode, exec_date):
- """处理单个资源表"""
- logger.info(f"执行资源表 {target_table} 的脚本 {script_name}")
- # 检查exec_date是否是JSON字符串
- if isinstance(exec_date, str) and exec_date.startswith('{'):
- try:
- # 尝试解析JSON字符串
- exec_date_data = json.loads(exec_date)
- exec_date = exec_date_data.get("exec_date")
- logger.info(f"从JSON中提取执行日期: {exec_date}")
- except Exception as e:
- logger.error(f"解析exec_date JSON时出错: {str(e)}")
-
- return execute_with_monitoring(
- target_table=target_table,
- script_name=script_name,
- script_exec_mode=script_exec_mode,
- exec_date=exec_date
- )
- def process_model(target_table, script_name, script_exec_mode, exec_date):
- """处理单个模型表"""
- logger.info(f"执行模型表 {target_table} 的脚本 {script_name}")
- # 检查exec_date是否是JSON字符串
- if isinstance(exec_date, str) and exec_date.startswith('{'):
- try:
- # 尝试解析JSON字符串
- exec_date_data = json.loads(exec_date)
- exec_date = exec_date_data.get("exec_date")
- logger.info(f"从JSON中提取执行日期: {exec_date}")
- except Exception as e:
- logger.error(f"解析exec_date JSON时出错: {str(e)}")
-
- return execute_with_monitoring(
- target_table=target_table,
- script_name=script_name,
- script_exec_mode=script_exec_mode,
- exec_date=exec_date
- )
- #############################################
- # 第三阶段: 汇总阶段(Summary Phase)的函数
- #############################################
- def get_execution_stats(exec_date):
- """获取当日执行统计信息"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- # 查询总任务数
- cursor.execute("""
- SELECT COUNT(*) FROM airflow_dag_schedule WHERE exec_date = %s
- """, (exec_date,))
- result = cursor.fetchone()
- total_tasks = result[0] if result else 0
-
- # 查询每种类型的任务数
- cursor.execute("""
- SELECT target_table_label, COUNT(*)
- FROM airflow_dag_schedule
- WHERE exec_date = %s
- GROUP BY target_table_label
- """, (exec_date,))
- type_counts = {row[0]: row[1] for row in cursor.fetchall()}
-
- # 查询执行结果统计
- cursor.execute("""
- SELECT COUNT(*)
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND exec_result IS TRUE
- """, (exec_date,))
- result = cursor.fetchone()
- success_count = result[0] if result else 0
-
- cursor.execute("""
- SELECT COUNT(*)
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND exec_result IS FALSE
- """, (exec_date,))
- result = cursor.fetchone()
- fail_count = result[0] if result else 0
-
- cursor.execute("""
- SELECT COUNT(*)
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND exec_result IS NULL
- """, (exec_date,))
- result = cursor.fetchone()
- pending_count = result[0] if result else 0
-
- # 计算执行时间统计
- cursor.execute("""
- SELECT AVG(exec_duration), MIN(exec_duration), MAX(exec_duration)
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND exec_duration IS NOT NULL
- """, (exec_date,))
- time_stats = cursor.fetchone()
-
- # 确保时间统计不为None
- if time_stats and time_stats[0] is not None:
- avg_duration = float(time_stats[0])
- min_duration = float(time_stats[1]) if time_stats[1] is not None else None
- max_duration = float(time_stats[2]) if time_stats[2] is not None else None
- else:
- avg_duration = None
- min_duration = None
- max_duration = None
-
- # 查询失败任务详情
- cursor.execute("""
- SELECT target_table, script_name, target_table_label, exec_duration
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND exec_result IS FALSE
- """, (exec_date,))
- failed_tasks = []
- for row in cursor.fetchall():
- task_dict = {
- "target_table": row[0],
- "script_name": row[1],
- "target_table_label": row[2],
- }
- if row[3] is not None:
- task_dict["exec_duration"] = float(row[3])
- else:
- task_dict["exec_duration"] = None
- failed_tasks.append(task_dict)
-
- # 计算成功率,避免除零错误
- success_rate = 0
- if total_tasks > 0:
- success_rate = (success_count / total_tasks) * 100
-
- # 汇总统计信息
- stats = {
- "exec_date": exec_date,
- "total_tasks": total_tasks,
- "type_counts": type_counts,
- "success_count": success_count,
- "fail_count": fail_count,
- "pending_count": pending_count,
- "success_rate": success_rate,
- "avg_duration": avg_duration,
- "min_duration": min_duration,
- "max_duration": max_duration,
- "failed_tasks": failed_tasks
- }
-
- return stats
- except Exception as e:
- logger.error(f"获取执行统计信息时出错: {str(e)}")
- return {}
- finally:
- cursor.close()
- conn.close()
- def update_missing_results(exec_date):
- """更新缺失的执行结果信息"""
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- # 查询所有缺失执行结果的任务
- cursor.execute("""
- SELECT target_table, script_name
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND exec_result IS NULL
- """, (exec_date,))
- missing_results = cursor.fetchall()
-
- update_count = 0
- for row in missing_results:
- target_table, script_name = row
-
- # 如果有开始时间但没有结束时间,假设执行失败
- cursor.execute("""
- SELECT exec_start_time
- FROM airflow_dag_schedule
- WHERE exec_date = %s AND target_table = %s AND script_name = %s
- """, (exec_date, target_table, script_name))
-
- start_time = cursor.fetchone()
-
- if start_time and start_time[0]:
- # 有开始时间但无结果,标记为失败
- now = datetime.now()
- duration = (now - start_time[0]).total_seconds()
-
- cursor.execute("""
- UPDATE airflow_dag_schedule
- SET exec_result = FALSE, exec_end_time = %s, exec_duration = %s
- WHERE exec_date = %s AND target_table = %s AND script_name = %s
- """, (now, duration, exec_date, target_table, script_name))
-
- logger.warning(f"任务 {target_table} 的脚本 {script_name} 标记为失败,开始时间: {start_time[0]}")
- update_count += 1
- else:
- # 没有开始时间且无结果,假设未执行
- logger.warning(f"任务 {target_table} 的脚本 {script_name} 未执行")
-
- conn.commit()
- logger.info(f"更新了 {update_count} 个缺失结果的任务")
- return update_count
- except Exception as e:
- logger.error(f"更新缺失执行结果时出错: {str(e)}")
- conn.rollback()
- return 0
- finally:
- cursor.close()
- conn.close()
- def generate_unified_execution_report(exec_date, stats):
- """生成统一执行报告"""
- # 构建报告
- report = []
- report.append(f"========== 统一数据运维系统执行报告 ==========")
- report.append(f"执行日期: {exec_date}")
- report.append(f"总任务数: {stats['total_tasks']}")
-
- # 任务类型分布
- report.append("\n--- 任务类型分布 ---")
- for label, count in stats.get('type_counts', {}).items():
- report.append(f"{label} 任务: {count} 个")
-
- # 执行结果统计
- report.append("\n--- 执行结果统计 ---")
- report.append(f"成功任务: {stats.get('success_count', 0)} 个")
- report.append(f"失败任务: {stats.get('fail_count', 0)} 个")
- report.append(f"未执行任务: {stats.get('pending_count', 0)} 个")
- report.append(f"成功率: {stats.get('success_rate', 0):.2f}%")
-
- # 执行时间统计
- report.append("\n--- 执行时间统计 (秒) ---")
- avg_duration = stats.get('avg_duration')
- min_duration = stats.get('min_duration')
- max_duration = stats.get('max_duration')
-
- report.append(f"平均执行时间: {avg_duration:.2f}" if avg_duration is not None else "平均执行时间: N/A")
- report.append(f"最短执行时间: {min_duration:.2f}" if min_duration is not None else "最短执行时间: N/A")
- report.append(f"最长执行时间: {max_duration:.2f}" if max_duration is not None else "最长执行时间: N/A")
-
- # 失败任务详情
- failed_tasks = stats.get('failed_tasks', [])
- if failed_tasks:
- report.append("\n--- 失败任务详情 ---")
- for i, task in enumerate(failed_tasks, 1):
- report.append(f"{i}. 表名: {task['target_table']}")
- report.append(f" 脚本: {task['script_name']}")
- report.append(f" 类型: {task['target_table_label']}")
- exec_duration = task.get('exec_duration')
- if exec_duration is not None:
- report.append(f" 执行时间: {exec_duration:.2f} 秒")
- else:
- report.append(" 执行时间: N/A")
-
- report.append("\n========== 报告结束 ==========")
-
- # 将报告转换为字符串
- report_str = "\n".join(report)
-
- # 记录到日志
- logger.info("\n" + report_str)
-
- return report_str
- def summarize_execution(**kwargs):
- """汇总执行情况的主函数"""
- try:
- exec_date = kwargs.get('ds') or get_today_date()
- logger.info(f"开始汇总执行日期 {exec_date} 的统一执行情况")
-
- # 1. 更新缺失的执行结果
- try:
- update_count = update_missing_results(exec_date)
- logger.info(f"更新了 {update_count} 个缺失的执行结果")
- except Exception as e:
- logger.error(f"更新缺失执行结果时出错: {str(e)}")
- update_count = 0
-
- # 2. 获取执行统计信息
- try:
- stats = get_execution_stats(exec_date)
- if not stats:
- logger.warning("未能获取执行统计信息,将使用默认值")
- stats = {
- "exec_date": exec_date,
- "total_tasks": 0,
- "type_counts": {},
- "success_count": 0,
- "fail_count": 0,
- "pending_count": 0,
- "success_rate": 0,
- "avg_duration": None,
- "min_duration": None,
- "max_duration": None,
- "failed_tasks": []
- }
- except Exception as e:
- logger.error(f"获取执行统计信息时出错: {str(e)}")
- stats = {
- "exec_date": exec_date,
- "total_tasks": 0,
- "type_counts": {},
- "success_count": 0,
- "fail_count": 0,
- "pending_count": 0,
- "success_rate": 0,
- "avg_duration": None,
- "min_duration": None,
- "max_duration": None,
- "failed_tasks": []
- }
-
- # 3. 生成执行报告
- try:
- report = generate_unified_execution_report(exec_date, stats)
- except Exception as e:
- logger.error(f"生成执行报告时出错: {str(e)}")
- report = f"生成执行报告时出错: {str(e)}\n基础统计: 总任务数: {stats.get('total_tasks', 0)}, 成功: {stats.get('success_count', 0)}, 失败: {stats.get('fail_count', 0)}"
-
- # 将报告和统计信息传递给下一个任务
- try:
- kwargs['ti'].xcom_push(key='execution_stats', value=json.dumps(stats, cls=DecimalEncoder))
- kwargs['ti'].xcom_push(key='execution_report', value=report)
- except Exception as e:
- logger.error(f"保存报告到XCom时出错: {str(e)}")
-
- return report
- except Exception as e:
- logger.error(f"汇总执行情况时出现未处理的错误: {str(e)}")
- # 返回一个简单的错误报告,确保任务不会失败
- return f"执行汇总时出现错误: {str(e)}"
- # 创建DAG
- with DAG(
- "dag_dataops_unified_scheduler",
- start_date=datetime(2024, 1, 1),
- schedule_interval="@daily",
- catchup=False,
- default_args={
- 'owner': 'airflow',
- 'depends_on_past': False,
- 'email_on_failure': False,
- 'email_on_retry': False,
- 'retries': 1,
- 'retry_delay': timedelta(minutes=5)
- }
- ) as dag:
-
- #############################################
- # 阶段1: 准备阶段(Prepare Phase)
- #############################################
- with TaskGroup("prepare_phase") as prepare_group:
- # 任务开始标记
- start_preparation = EmptyOperator(
- task_id="start_preparation"
- )
-
- # 准备调度任务
- prepare_task = PythonOperator(
- task_id="prepare_dag_schedule",
- python_callable=prepare_dag_schedule,
- provide_context=True
- )
-
- # 创建执行计划 - 从data_processing_phase移至这里
- create_plan = PythonOperator(
- task_id="create_execution_plan",
- python_callable=create_execution_plan,
- provide_context=True
- )
-
- # 准备完成标记
- preparation_completed = EmptyOperator(
- task_id="preparation_completed"
- )
-
- # 设置任务依赖 - 调整为包含create_plan
- start_preparation >> prepare_task >> create_plan >> preparation_completed
-
- #############################################
- # 阶段2: 数据处理阶段(Data Processing Phase)
- #############################################
- with TaskGroup("data_processing_phase") as data_group:
- # 过程完成标记
- processing_completed = EmptyOperator(
- task_id="processing_completed"
- )
-
- #############################################
- # 阶段3: 汇总阶段(Summary Phase)
- #############################################
- with TaskGroup("summary_phase") as summary_group:
- # 汇总执行情况
- summarize_task = PythonOperator(
- task_id="summarize_execution",
- python_callable=summarize_execution,
- provide_context=True
- )
-
- # 总结完成标记
- summary_completed = EmptyOperator(
- task_id="summary_completed"
- )
-
- # 设置任务依赖
- summarize_task >> summary_completed
-
- # 设置三个阶段之间的依赖关系 - 使用简单的TaskGroup依赖
- prepare_group >> data_group >> summary_group
- # 实际数据处理任务的动态创建逻辑
- # 这部分代码在DAG对象定义时执行,而不是在DAG运行时执行
-
- # 创建一个DynamicTaskMapper用于动态创建任务
- class DynamicTaskMapper(PythonOperator):
- """用于动态映射任务的特殊PythonOperator。
- 该类作为一个普通任务执行,但会在运行时动态创建下游任务。"""
-
- def execute(self, context):
- """在DAG运行时动态创建和执行任务"""
- try:
- logger.info("开始动态任务映射...")
-
- # 从XCom获取执行计划
- ti = context['ti']
- execution_plan_json = ti.xcom_pull(
- task_ids='prepare_phase.create_execution_plan'
- )
-
- if not execution_plan_json:
- logger.info("尝试从prepare_phase.prepare_dag_schedule获取执行计划")
- execution_plan_tmp = ti.xcom_pull(
- task_ids='prepare_phase.prepare_dag_schedule',
- key='execution_plan'
- )
-
- if execution_plan_tmp:
- execution_plan_json = execution_plan_tmp
- else:
- logger.error("无法从XCom获取执行计划")
- raise ValueError("执行计划未找到")
-
- # 解析执行计划
- if isinstance(execution_plan_json, str):
- execution_plan = json.loads(execution_plan_json)
- else:
- execution_plan = execution_plan_json
-
- # 获取资源任务和模型任务
- resource_tasks = execution_plan.get("resource_tasks", [])
- model_tasks = execution_plan.get("model_tasks", [])
- dependencies = execution_plan.get("dependencies", {})
-
- logger.info(f"获取到执行计划: {len(resource_tasks)}个资源任务, {len(model_tasks)}个模型任务")
-
- # 处理资源任务
- logger.info("处理资源任务...")
- for task_info in resource_tasks:
- target_table = task_info["target_table"]
- script_name = task_info["script_name"]
- script_exec_mode = task_info.get("script_exec_mode", "append")
-
- logger.info(f"执行资源表任务: {target_table}, 脚本: {script_name}")
- try:
- process_resource(
- target_table=target_table,
- script_name=script_name,
- script_exec_mode=script_exec_mode,
- exec_date=context.get('ds')
- )
- except Exception as e:
- logger.error(f"处理资源表 {target_table} 时出错: {str(e)}")
-
- # 构建模型表依赖图,确定执行顺序
- G = nx.DiGraph()
-
- # 添加所有模型表节点
- for task_info in model_tasks:
- G.add_node(task_info["target_table"])
-
- # 添加依赖边
- for source, deps in dependencies.items():
- for dep in deps:
- if dep.get("table_type") == "DataModel" and dep.get("table_name") in G.nodes():
- G.add_edge(dep.get("table_name"), source) # 依赖方向:依赖项 -> 目标
-
- # 检测并处理循环依赖
- cycles = list(nx.simple_cycles(G))
- if cycles:
- logger.warning(f"检测到循环依赖: {cycles}")
- for cycle in cycles:
- G.remove_edge(cycle[-1], cycle[0])
- logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
-
- # 生成拓扑排序,确定执行顺序
- try:
- execution_order = list(nx.topological_sort(G))
- logger.info(f"计算出的执行顺序: {execution_order}")
- except Exception as e:
- logger.error(f"生成拓扑排序失败: {str(e)}, 使用原始顺序")
- execution_order = [task_info["target_table"] for task_info in model_tasks]
-
- # 按顺序执行模型表任务
- for table_name in execution_order:
- task_info = next((t for t in model_tasks if t["target_table"] == table_name), None)
- if not task_info:
- continue
-
- target_table = task_info["target_table"]
- script_name = task_info["script_name"]
- script_exec_mode = task_info.get("script_exec_mode", "append")
-
- logger.info(f"执行模型表任务: {target_table}, 脚本: {script_name}")
- try:
- process_model(
- target_table=target_table,
- script_name=script_name,
- script_exec_mode=script_exec_mode,
- exec_date=context.get('ds')
- )
- except Exception as e:
- logger.error(f"处理模型表 {target_table} 时出错: {str(e)}")
-
- return f"成功执行 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务"
-
- except Exception as e:
- logger.error(f"动态任务映射失败: {str(e)}")
- import traceback
- logger.error(traceback.format_exc())
- raise
-
- # 在data_processing_phase中使用修改后的DynamicTaskMapper
- with data_group:
- dynamic_task_mapper = DynamicTaskMapper(
- task_id="dynamic_task_mapper",
- python_callable=lambda **kwargs: "Dynamic task mapping placeholder",
- provide_context=True
- )
-
- # 设置依赖关系
- preparation_completed >> dynamic_task_mapper >> processing_completed
-
- # 注意:以下原始代码不再需要,因为我们现在使用DynamicTaskMapper来动态创建和执行任务
- # 保留的原始try-except块的结尾,确保代码结构完整
-
- # 尝试从数据库获取最新的执行计划,用于WebUI展示
- try:
- # 使用一个只在DAG加载时执行一次的简单查询来获取表信息
- # 这只用于UI展示,不影响实际执行
- conn = get_pg_conn()
- cursor = conn.cursor()
- try:
- cursor.execute("""
- SELECT COUNT(*) FROM airflow_dag_schedule
- """)
- count = cursor.fetchone()
- if count and count[0] > 0:
- logger.info(f"数据库中有 {count[0]} 条任务记录可用于调度")
- else:
- logger.info("数据库中没有找到任务记录,DAG的第一次运行将创建初始计划")
- except Exception as e:
- logger.warning(f"查询数据库时出错: {str(e)}, 这不会影响DAG的实际执行")
- finally:
- cursor.close()
- conn.close()
- except Exception as e:
- logger.warning(f"初始化DAG时发生错误: {str(e)}, 这不会影响DAG的实际执行")
- # 确保即使出错,也有清晰的执行路径
- # 已经有默认依赖链,不需要额外添加
|