script_utils.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # 这是dataops_scripts目录下的文件 - 用于验证路径修改成功
  4. import logging
  5. import sys
  6. import os
  7. import traceback
  8. # 添加父目录到Python路径,以便能导入dags目录下的config模块
  9. parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
  10. if parent_dir not in sys.path:
  11. sys.path.insert(0, parent_dir)
  12. import importlib.util
  13. from datetime import datetime, timedelta
  14. import pytz
  15. import re # 添加re模块以支持正则表达式
  16. # 添加导入SCHEDULE_TABLE_SCHEMA
  17. #from dags.config import SCHEDULE_TABLE_SCHEMA
  18. # 导入Airflow相关包
  19. try:
  20. from airflow.models import Variable
  21. except ImportError:
  22. # 处理在非Airflow环境中运行的情况
  23. class Variable:
  24. @staticmethod
  25. def get(key, default_var=None):
  26. return default_var
  27. # 配置日志记录器
  28. logging.basicConfig(
  29. level=logging.INFO,
  30. format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
  31. handlers=[
  32. logging.StreamHandler(sys.stdout)
  33. ]
  34. )
  35. logger = logging.getLogger("script_utils")
  36. def get_config_path():
  37. """
  38. 从Airflow变量中获取DATAOPS_DAGS_PATH
  39. 返回:
  40. str: config.py的完整路径
  41. """
  42. try:
  43. # 从Airflow变量中获取DATAOPS_DAGS_PATH
  44. dags_path = Variable.get("DATAOPS_DAGS_PATH", "/opt/airflow/dags")
  45. logger.info(f"从Airflow变量获取到DATAOPS_DAGS_PATH: {dags_path}")
  46. # 构建config.py的完整路径
  47. config_path = os.path.join(dags_path, "config.py")
  48. if not os.path.exists(config_path):
  49. logger.warning(f"配置文件路径不存在: {config_path}, 将使用默认路径")
  50. # 尝试使用相对路径
  51. alt_config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../dags/config.py"))
  52. if os.path.exists(alt_config_path):
  53. logger.info(f"使用替代配置路径: {alt_config_path}")
  54. return alt_config_path
  55. return config_path
  56. except Exception as e:
  57. logger.error(f"获取配置路径时出错: {str(e)}")
  58. # 使用默认路径
  59. return os.path.abspath(os.path.join(os.path.dirname(__file__), "../dags/config.py"))
  60. def load_config_module():
  61. """
  62. 动态加载config.py模块
  63. 返回:
  64. module: 加载的config模块
  65. """
  66. try:
  67. config_path = get_config_path()
  68. logger.info(f"正在加载配置文件: {config_path}")
  69. # 动态加载config.py模块
  70. spec = importlib.util.spec_from_file_location("config", config_path)
  71. config_module = importlib.util.module_from_spec(spec)
  72. spec.loader.exec_module(config_module)
  73. return config_module
  74. except Exception as e:
  75. logger.error(f"加载配置模块时出错: {str(e)}")
  76. raise ImportError(f"无法加载配置模块: {str(e)}")
  77. def get_neo4j_driver():
  78. """获取Neo4j连接驱动"""
  79. try:
  80. # 使用get_config_path获取config路径
  81. config_path = get_config_path()
  82. if not os.path.exists(config_path):
  83. raise FileNotFoundError(f"配置文件不存在: {config_path}")
  84. logger.info(f"使用配置文件路径: {config_path}")
  85. # 动态加载config模块
  86. spec = importlib.util.spec_from_file_location("config", config_path)
  87. config_module = importlib.util.module_from_spec(spec)
  88. spec.loader.exec_module(config_module)
  89. # 从模块中获取NEO4J_CONFIG
  90. NEO4J_CONFIG = getattr(config_module, "NEO4J_CONFIG", None)
  91. if not NEO4J_CONFIG:
  92. raise ValueError(f"配置文件 {config_path} 中未找到NEO4J_CONFIG配置项")
  93. # 验证NEO4J_CONFIG中包含必要的配置项
  94. required_keys = ["uri", "user", "password"]
  95. missing_keys = [key for key in required_keys if key not in NEO4J_CONFIG]
  96. if missing_keys:
  97. raise ValueError(f"NEO4J_CONFIG缺少必要的配置项: {', '.join(missing_keys)}")
  98. # 创建Neo4j驱动
  99. from neo4j import GraphDatabase
  100. logger.info(f"使用配置创建Neo4j驱动: {NEO4J_CONFIG['uri']}")
  101. return GraphDatabase.driver(
  102. NEO4J_CONFIG['uri'],
  103. auth=(NEO4J_CONFIG['user'], NEO4J_CONFIG['password'])
  104. )
  105. except Exception as e:
  106. logger.error(f"创建Neo4j驱动失败: {str(e)}")
  107. logger.error(traceback.format_exc())
  108. raise
  109. def get_pg_config():
  110. """
  111. 从config.py获取PostgreSQL数据库配置
  112. 返回:
  113. dict: PostgreSQL配置字典
  114. """
  115. try:
  116. config_module = load_config_module()
  117. pg_config = getattr(config_module, "PG_CONFIG", None)
  118. if pg_config is None:
  119. logger.warning("配置模块中未找到PG_CONFIG")
  120. # 返回默认配置
  121. return {
  122. "host": "localhost",
  123. "port": 5432,
  124. "user": "postgres",
  125. "password": "postgres",
  126. "database": "dataops"
  127. }
  128. logger.info(f"已获取PostgreSQL配置: {pg_config}")
  129. return pg_config
  130. except Exception as e:
  131. logger.error(f"获取PostgreSQL配置时出错: {str(e)}")
  132. # 返回默认配置
  133. return {
  134. "host": "localhost",
  135. "port": 5432,
  136. "user": "postgres",
  137. "password": "postgres",
  138. "database": "dataops"
  139. }
  140. def get_upload_paths():
  141. """
  142. 从config.py获取文件上传和归档路径
  143. 返回:
  144. tuple: (上传路径, 归档路径)
  145. """
  146. try:
  147. config_module = load_config_module()
  148. upload_path = getattr(config_module, "STRUCTURE_UPLOAD_BASE_PATH", "/data/csv")
  149. archive_path = getattr(config_module, "STRUCTURE_UPLOAD_ARCHIVE_BASE_PATH", "/data/archive")
  150. logger.info(f"已获取上传路径: {upload_path}, 归档路径: {archive_path}")
  151. return upload_path, archive_path
  152. except Exception as e:
  153. logger.error(f"获取上传路径时出错: {str(e)}")
  154. # 返回默认路径
  155. return "/data/csv", "/data/archive"
  156. def get_date_range(exec_date, frequency):
  157. """
  158. 根据执行日期和频率,计算开始日期和结束日期
  159. 参数:
  160. exec_date (str): 执行日期,格式为 YYYY-MM-DD
  161. frequency (str): 频率,可选值为 daily, weekly, monthly, quarterly, yearly
  162. 返回:
  163. tuple: (start_date, end_date) 格式为 YYYY-MM-DD 的字符串
  164. """
  165. logger.info(f"计算日期范围 - 执行日期: {exec_date}, 频率: {frequency}")
  166. # 将输入的日期转换为上海时区的datetime对象
  167. shanghai_tz = pytz.timezone('Asia/Shanghai')
  168. try:
  169. # 解析输入的exec_date
  170. if isinstance(exec_date, str):
  171. date_obj = datetime.strptime(exec_date, '%Y-%m-%d')
  172. elif isinstance(exec_date, datetime):
  173. date_obj = exec_date
  174. else:
  175. raise ValueError(f"不支持的exec_date类型: {type(exec_date)}")
  176. # 转换为上海时区
  177. date_obj = shanghai_tz.localize(date_obj)
  178. logger.info(f"上海时区的执行日期: {date_obj}")
  179. # 根据不同频率计算日期范围
  180. if frequency.lower() == 'daily':
  181. # 每日: start_date = exec_date, end_date = exec_date + 1 day
  182. start_date = date_obj.strftime('%Y-%m-%d')
  183. end_date = (date_obj + timedelta(days=1)).strftime('%Y-%m-%d')
  184. elif frequency.lower() == 'weekly':
  185. # 每周: start_date = 本周一, end_date = 下周一
  186. days_since_monday = date_obj.weekday() # 0=周一, 6=周日
  187. monday = date_obj - timedelta(days=days_since_monday)
  188. next_monday = monday + timedelta(days=7)
  189. start_date = monday.strftime('%Y-%m-%d')
  190. end_date = next_monday.strftime('%Y-%m-%d')
  191. elif frequency.lower() == 'monthly':
  192. # 每月: start_date = 本月第一天, end_date = 下月第一天
  193. first_day = date_obj.replace(day=1)
  194. # 计算下个月的第一天
  195. if first_day.month == 12:
  196. next_month_first_day = first_day.replace(year=first_day.year + 1, month=1)
  197. else:
  198. next_month_first_day = first_day.replace(month=first_day.month + 1)
  199. start_date = first_day.strftime('%Y-%m-%d')
  200. end_date = next_month_first_day.strftime('%Y-%m-%d')
  201. elif frequency.lower() == 'quarterly':
  202. # 每季度: start_date = 本季度第一天, end_date = 下季度第一天
  203. quarter = (date_obj.month - 1) // 3 + 1 # 1-4季度
  204. first_month_of_quarter = (quarter - 1) * 3 + 1 # 季度的第一个月
  205. quarter_first_day = date_obj.replace(month=first_month_of_quarter, day=1)
  206. # 计算下个季度的第一天
  207. if quarter == 4:
  208. next_quarter_first_day = quarter_first_day.replace(year=quarter_first_day.year + 1, month=1)
  209. else:
  210. next_quarter_first_day = quarter_first_day.replace(month=first_month_of_quarter + 3)
  211. start_date = quarter_first_day.strftime('%Y-%m-%d')
  212. end_date = next_quarter_first_day.strftime('%Y-%m-%d')
  213. elif frequency.lower() == 'yearly':
  214. # 每年: start_date = 本年第一天, end_date = 下年第一天
  215. year_first_day = date_obj.replace(month=1, day=1)
  216. next_year_first_day = date_obj.replace(year=date_obj.year + 1, month=1, day=1)
  217. start_date = year_first_day.strftime('%Y-%m-%d')
  218. end_date = next_year_first_day.strftime('%Y-%m-%d')
  219. else:
  220. logger.error(f"不支持的频率: {frequency}")
  221. raise ValueError(f"不支持的频率: {frequency}")
  222. logger.info(f"计算结果 - 开始日期: {start_date}, 结束日期: {end_date}")
  223. return start_date, end_date
  224. except Exception as e:
  225. logger.error(f"计算日期范围时出错: {str(e)}", exc_info=True)
  226. raise
  227. import re
  228. from typing import Dict, List, Optional, Set
  229. def extract_source_fields_linked_to_template(sql: str, jinja_vars: List[str]) -> Set[str]:
  230. """
  231. 从 SQL 中提取和 jinja 模板变量绑定的源字段(支持各种形式)
  232. """
  233. fields = set()
  234. sql = re.sub(r"\s+", " ", sql)
  235. for var in jinja_vars:
  236. # 普通比较、函数包裹
  237. pattern = re.compile(
  238. r"""
  239. (?P<field>
  240. (?:\w+\s*\(\s*)? # 可选函数开始(如 DATE(
  241. [\w\.]+ # 字段名
  242. (?:\s+AS\s+\w+)? # 可选 CAST 形式
  243. \)? # 可选右括号
  244. )
  245. \s*(=|<|>|<=|>=)\s*['"]?\{\{\s*""" + var + r"""\s*\}\}['"]?
  246. """, re.IGNORECASE | re.VERBOSE
  247. )
  248. fields.update(match.group("field").strip() for match in pattern.finditer(sql))
  249. # BETWEEN '{{ start_date }}' AND '{{ end_date }}'
  250. if var == "start_date":
  251. pattern_between = re.compile(
  252. r"""(?P<field>
  253. (?:\w+\s*\(\s*)?[\w\.]+(?:\s+AS\s+\w+)?\)? # 字段(函数包裹可选)
  254. )
  255. \s+BETWEEN\s+['"]?\{\{\s*start_date\s*\}\}['"]?\s+AND\s+['"]?\{\{\s*end_date\s*\}\}
  256. """, re.IGNORECASE | re.VERBOSE
  257. )
  258. fields.update(match.group("field").strip() for match in pattern_between.finditer(sql))
  259. return {extract_core_field(f) for f in fields}
  260. def extract_core_field(expr: str) -> str:
  261. """
  262. 清洗函数包裹的字段表达式:DATE(sd.sale_date) -> sd.sale_date, CAST(...) -> ...
  263. """
  264. expr = re.sub(r"CAST\s*\(\s*([\w\.]+)\s+AS\s+\w+\s*\)", r"\1", expr, flags=re.IGNORECASE)
  265. expr = re.sub(r"\b\w+\s*\(\s*([\w\.]+)\s*\)", r"\1", expr)
  266. return expr.strip()
  267. def parse_select_aliases(sql: str) -> Dict[str, str]:
  268. """
  269. 提取 SELECT 中的字段别名映射:原字段 -> 目标别名
  270. """
  271. sql = re.sub(r"\s+", " ", sql)
  272. select_clause_match = re.search(r"SELECT\s+(.*?)\s+FROM", sql, re.IGNORECASE)
  273. if not select_clause_match:
  274. return {}
  275. select_clause = select_clause_match.group(1)
  276. mappings = {}
  277. for expr in select_clause.split(","):
  278. expr = expr.strip()
  279. alias_match = re.match(r"([\w\.]+)\s+AS\s+([\w]+)", expr, re.IGNORECASE)
  280. if alias_match:
  281. source, alias = alias_match.groups()
  282. mappings[source.strip()] = alias.strip()
  283. return mappings
  284. def find_target_date_field(sql: str, jinja_vars: List[str] = ["start_date", "end_date"]) -> Optional[str]:
  285. """
  286. 从 SQL 中找出与模板时间变量绑定的目标表字段(只返回一个)
  287. """
  288. source_fields = extract_source_fields_linked_to_template(sql, jinja_vars)
  289. alias_map = parse_select_aliases(sql)
  290. # 匹配 SELECT 中的映射字段
  291. for src_field in source_fields:
  292. if src_field in alias_map:
  293. return alias_map[src_field] # 源字段映射的目标字段
  294. # 若未通过 AS 映射,可能直接 SELECT sd.sale_date(裸字段)
  295. for src_field in source_fields:
  296. if '.' not in src_field:
  297. return src_field # 裸字段直接作为目标字段名
  298. return None
  299. def generate_delete_sql(sql_content, target_table=None):
  300. """
  301. 根据SQL脚本内容生成用于清理数据的DELETE语句
  302. 参数:
  303. sql_content (str): 原始SQL脚本内容
  304. target_table (str, optional): 目标表名,如果SQL脚本中无法解析出表名时使用
  305. 返回:
  306. str: DELETE语句,用于清理数据
  307. """
  308. logger.info("生成清理SQL语句,实现ETL作业幂等性")
  309. # 如果提供了目标表名,直接使用
  310. if target_table:
  311. logger.info(f"使用提供的目标表名: {target_table}")
  312. delete_stmt = f"""DELETE FROM {target_table}
  313. WHERE summary_date >= '{{{{ start_date }}}}'
  314. AND summary_date < '{{{{ end_date }}}}';"""
  315. logger.info(f"生成的清理SQL: {delete_stmt}")
  316. return delete_stmt
  317. # 尝试从SQL内容中解析出目标表名
  318. try:
  319. # 简单解析,尝试找出INSERT语句的目标表
  320. # 匹配 INSERT INTO xxx 或 INSERT INTO "xxx" 或 INSERT INTO `xxx` 或 INSERT INTO [xxx]
  321. insert_match = re.search(r'INSERT\s+INTO\s+(?:["\[`])?([a-zA-Z0-9_\.]+)(?:["\]`])?', sql_content, re.IGNORECASE)
  322. if insert_match:
  323. table_name = insert_match.group(1)
  324. logger.info(f"从SQL中解析出目标表名: {table_name}")
  325. delete_stmt = f"""DELETE FROM {table_name}
  326. WHERE summary_date >= '{{{{ start_date }}}}'
  327. AND summary_date < '{{{{ end_date }}}}';"""
  328. logger.info(f"生成的清理SQL: {delete_stmt}")
  329. return delete_stmt
  330. else:
  331. logger.warning("无法从SQL中解析出目标表名,无法生成清理SQL")
  332. return None
  333. except Exception as e:
  334. logger.error(f"解析SQL生成清理语句时出错: {str(e)}", exc_info=True)
  335. return None
  336. def get_one_day_range(exec_date):
  337. """
  338. 根据exec_date返回当天的00:00:00和次日00:00:00,均为datetime对象
  339. 参数:
  340. exec_date (str 或 datetime): 执行日期,格式为YYYY-MM-DD或datetime对象
  341. 返回:
  342. tuple(datetime, datetime): (start_datetime, end_datetime)
  343. """
  344. shanghai_tz = pytz.timezone('Asia/Shanghai')
  345. if isinstance(exec_date, str):
  346. date_obj = datetime.strptime(exec_date, '%Y-%m-%d')
  347. elif isinstance(exec_date, datetime):
  348. date_obj = exec_date
  349. else:
  350. raise ValueError(f"不支持的exec_date类型: {type(exec_date)}")
  351. # 当天00:00:00
  352. start_datetime = shanghai_tz.localize(datetime(date_obj.year, date_obj.month, date_obj.day, 0, 0, 0))
  353. # 次日00:00:00
  354. end_datetime = start_datetime + timedelta(days=1)
  355. return start_datetime, end_datetime
  356. def get_target_dt_column(table_name, script_name=None):
  357. """
  358. 从Neo4j或data_transform_scripts表获取目标日期列
  359. 参数:
  360. table_name (str): 表名
  361. script_name (str, optional): 脚本名称
  362. 返回:
  363. str: 目标日期列名
  364. """
  365. logger.info(f"获取表 {table_name} 的目标日期列")
  366. try:
  367. # 首先从Neo4j获取
  368. driver = get_neo4j_driver()
  369. with driver.session() as session:
  370. # 尝试从DataModel节点的relations关系属性中获取
  371. query = """
  372. MATCH (n {en_name: $table_name})
  373. RETURN n.target_dt_column AS target_dt_column
  374. """
  375. result = session.run(query, table_name=table_name)
  376. record = result.single()
  377. if record and record.get("target_dt_column"):
  378. target_dt_column = record.get("target_dt_column")
  379. logger.info(f"从Neo4j获取到表 {table_name} 的目标日期列: {target_dt_column}")
  380. return target_dt_column
  381. # 导入需要的模块以连接数据库
  382. import sqlalchemy
  383. from sqlalchemy import create_engine, text
  384. # Neo4j中找不到,尝试从data_transform_scripts表获取
  385. # 获取目标数据库连接
  386. pg_config = get_pg_config()
  387. if not pg_config:
  388. logger.error("无法获取PG_CONFIG配置,无法连接数据库查询目标日期列")
  389. return None
  390. # 创建数据库引擎
  391. db_url = f"postgresql://{pg_config['user']}:{pg_config['password']}@{pg_config['host']}:{pg_config['port']}/{pg_config['database']}"
  392. engine = create_engine(db_url)
  393. if not engine:
  394. logger.error("无法创建数据库引擎,无法获取目标日期列")
  395. return None
  396. # 查询data_transform_scripts表
  397. schema = get_config_param("SCHEDULE_TABLE_SCHEMA")
  398. try:
  399. query = f"""
  400. SELECT target_dt_column
  401. FROM {schema}.data_transform_scripts
  402. WHERE target_table = '{table_name}'
  403. """
  404. if script_name:
  405. query += f" AND script_name = '{script_name}'"
  406. query += " LIMIT 1"
  407. with engine.connect() as conn:
  408. result = conn.execute(text(query))
  409. row = result.fetchone()
  410. if row and row[0]:
  411. target_dt_column = row[0]
  412. logger.info(f"从data_transform_scripts表获取到表 {table_name} 的目标日期列: {target_dt_column}")
  413. return target_dt_column
  414. except Exception as db_err:
  415. logger.error(f"从data_transform_scripts表获取目标日期列时出错: {str(db_err)}")
  416. logger.error(traceback.format_exc())
  417. # 都找不到,使用默认值
  418. logger.warning(f"未找到表 {table_name} 的目标日期列,将使用默认值 'data_date'")
  419. return "data_date"
  420. except Exception as e:
  421. logger.error(f"获取目标日期列时出错: {str(e)}")
  422. logger.error(traceback.format_exc())
  423. return None
  424. finally:
  425. if 'driver' in locals() and driver:
  426. driver.close()
  427. def get_config_param(param_name, default_value=None):
  428. """
  429. 从config模块动态获取配置参数
  430. 参数:
  431. param_name (str): 参数名
  432. default_value: 默认值
  433. 返回:
  434. 参数值,如果不存在则返回默认值
  435. """
  436. try:
  437. config_module = load_config_module()
  438. return getattr(config_module, param_name)
  439. except Exception as e:
  440. logger.warning(f"获取配置参数 {param_name} 失败: {str(e)},使用默认值: {default_value}")
  441. return default_value