import asyncio import json import logging import time from datetime import datetime from pathlib import Path from typing import List, Dict, Any, Optional from data_pipeline.config import SCHEMA_TOOLS_CONFIG from data_pipeline.validators import FileCountValidator from data_pipeline.analyzers import MDFileAnalyzer, ThemeExtractor from core.logging import get_data_pipeline_logger from core.vanna_llm_factory import create_vanna_instance class QuestionSQLGenerationAgent: """Question-SQL生成Agent""" def __init__(self, output_dir: str, table_list_file: str, business_context: str, db_name: str = None): """ 初始化Agent Args: output_dir: 输出目录(包含DDL和MD文件) table_list_file: 表清单文件路径 business_context: 业务上下文 db_name: 数据库名称(用于输出文件命名) """ self.output_dir = Path(output_dir) self.table_list_file = table_list_file self.business_context = business_context self.db_name = db_name or "db" self.config = SCHEMA_TOOLS_CONFIG self.logger = get_data_pipeline_logger("QSAgent") # 初始化组件 self.validator = FileCountValidator() self.md_analyzer = MDFileAnalyzer(output_dir) # vanna实例和主题提取器将在需要时初始化 self.vn = None self.theme_extractor = None # 中间结果存储 self.intermediate_results = [] self.intermediate_file = None async def generate(self) -> Dict[str, Any]: """ 生成Question-SQL对 Returns: 生成结果报告 """ start_time = time.time() try: self.logger.info("🚀 开始生成Question-SQL训练数据") # 1. 验证文件数量 self.logger.info("📋 验证文件数量...") validation_result = self.validator.validate(self.table_list_file, str(self.output_dir)) if not validation_result.is_valid: self.logger.error(f"❌ 文件验证失败: {validation_result.error}") if validation_result.missing_ddl: self.logger.error(f"缺失DDL文件: {validation_result.missing_ddl}") if validation_result.missing_md: self.logger.error(f"缺失MD文件: {validation_result.missing_md}") raise ValueError(f"文件验证失败: {validation_result.error}") self.logger.info(f"✅ 文件验证通过: {validation_result.table_count}个表") # 2. 读取所有MD文件内容 self.logger.info("📖 读取MD文件...") md_contents = await self.md_analyzer.read_all_md_files() # 3. 初始化LLM相关组件 self._initialize_llm_components() # 4. 提取分析主题 self.logger.info("🎯 提取分析主题...") themes = await self.theme_extractor.extract_themes(md_contents) self.logger.info(f"✅ 成功提取 {len(themes)} 个分析主题") for i, theme in enumerate(themes): topic_name = theme.get('topic_name', theme.get('name', '')) description = theme.get('description', '') self.logger.info(f" {i+1}. {topic_name}: {description}") # 5. 初始化中间结果文件 self._init_intermediate_file() # 6. 处理每个主题 all_qs_pairs = [] failed_themes = [] # 根据配置决定是并行还是串行处理 max_concurrent = self.config['qs_generation'].get('max_concurrent_themes', 1) if max_concurrent > 1: results = await self._process_themes_parallel(themes, md_contents, max_concurrent) else: results = await self._process_themes_serial(themes, md_contents) # 7. 整理结果 for result in results: if result['success']: all_qs_pairs.extend(result['qs_pairs']) else: failed_themes.append(result['theme_name']) # 8. 保存最终结果 output_file = await self._save_final_results(all_qs_pairs) # 8.5 生成metadata.txt文件 await self._generate_metadata_file(themes) # 8.6 生成metadata_detail.md文件 await self._generate_metadata_md_file(themes) # 8.7 生成db_query_decision_prompt.txt文件 await self._generate_decision_prompt_file(themes) # 9. 清理中间文件 if not failed_themes: # 只有全部成功才清理 self._cleanup_intermediate_file() # 10. 生成报告 end_time = time.time() report = { 'success': True, 'total_themes': len(themes), 'successful_themes': len(themes) - len(failed_themes), 'failed_themes': failed_themes, 'total_questions': len(all_qs_pairs), 'output_file': str(output_file), 'execution_time': end_time - start_time } self._print_summary(report) return report except Exception as e: self.logger.exception("❌ Question-SQL生成失败") # 保存当前已生成的结果 if self.intermediate_results: recovery_file = self._save_intermediate_results() self.logger.warning(f"⚠️ 中间结果已保存到: {recovery_file}") raise def _initialize_llm_components(self): """初始化LLM相关组件""" if not self.vn: self.logger.info("初始化LLM组件...") self.vn = create_vanna_instance() self.theme_extractor = ThemeExtractor(self.vn, self.business_context) async def _process_themes_serial(self, themes: List[Dict], md_contents: str) -> List[Dict]: """串行处理主题""" results = [] for i, theme in enumerate(themes): self.logger.info(f"处理主题 {i+1}/{len(themes)}: {theme.get('topic_name', theme.get('name', ''))}") result = await self._process_single_theme(theme, md_contents) results.append(result) # 检查是否需要继续 if not result['success'] and not self.config['qs_generation']['continue_on_theme_error']: self.logger.error(f"主题处理失败,停止处理") break return results async def _process_themes_parallel(self, themes: List[Dict], md_contents: str, max_concurrent: int) -> List[Dict]: """并行处理主题""" semaphore = asyncio.Semaphore(max_concurrent) async def process_with_semaphore(theme): async with semaphore: return await self._process_single_theme(theme, md_contents) tasks = [process_with_semaphore(theme) for theme in themes] results = await asyncio.gather(*tasks, return_exceptions=True) # 处理异常结果 processed_results = [] for i, result in enumerate(results): if isinstance(result, Exception): theme_name = themes[i].get('topic_name', themes[i].get('name', '')) self.logger.error(f"主题 '{theme_name}' 处理异常: {result}") processed_results.append({ 'success': False, 'theme_name': theme_name, 'error': str(result) }) else: processed_results.append(result) return processed_results async def _process_single_theme(self, theme: Dict, md_contents: str) -> Dict: """处理单个主题""" theme_name = theme.get('topic_name', theme.get('name', '')) try: self.logger.info(f"🔍 开始处理主题: {theme_name}") # 构建prompt prompt = self._build_qs_generation_prompt(theme, md_contents) # 调用LLM生成 response = await self._call_llm(prompt) # 解析响应 qs_pairs = self._parse_qs_response(response) # 验证和清理 validated_pairs = self._validate_qs_pairs(qs_pairs, theme_name) # 保存中间结果 await self._save_theme_results(theme_name, validated_pairs) self.logger.info(f"✅ 主题 '{theme_name}' 处理成功,生成 {len(validated_pairs)} 个问题") return { 'success': True, 'theme_name': theme_name, 'qs_pairs': validated_pairs } except Exception as e: self.logger.error(f"❌ 处理主题 '{theme_name}' 失败: {e}") return { 'success': False, 'theme_name': theme_name, 'error': str(e), 'qs_pairs': [] } def _build_qs_generation_prompt(self, theme: Dict, md_contents: str) -> str: """构建Question-SQL生成的prompt""" questions_count = self.config['qs_generation']['questions_per_theme'] # 获取主题信息 topic_name = theme.get('topic_name', theme.get('name', '')) description = theme.get('description', '') biz_entities = theme.get('biz_entities', []) biz_metrics = theme.get('biz_metrics', []) related_tables = theme.get('related_tables', []) prompt = f"""你是一位业务数据分析师,正在为{self.business_context}设计数据查询。 当前分析主题:{topic_name} 主题描述:{description} 业务实体:{', '.join(biz_entities)} 业务指标:{', '.join(biz_metrics)} 相关表:{', '.join(related_tables)} 数据库表结构信息: {md_contents} 请为这个主题生成 {questions_count} 个业务问题和对应的SQL查询。 要求: 1. 问题应该从业务角度出发,贴合主题要求,具有实际分析价值 2. SQL必须使用PostgreSQL语法 3. 考虑实际业务逻辑(如软删除使用 delete_ts IS NULL 条件) 4. 使用中文别名提高可读性(使用 AS 指定列别名) 5. 问题应该多样化,覆盖不同的分析角度 6. 包含时间筛选、分组统计、排序、限制等不同类型的查询 7. SQL语句末尾必须以分号结束 8. **重要:问题和SQL都必须是单行文本,不能包含换行符** 输出JSON格式(注意SQL中的双引号需要转义): ```json [ {{ "question": "具体的业务问题?", "sql": "SELECT column AS 中文名 FROM table WHERE condition;" }} ] ``` 生成的问题应该包括但不限于: - 趋势分析(按时间维度) - 对比分析(不同维度对比) - 排名统计(TOP N) - 汇总统计(总量、平均值等) - 明细查询(特定条件的详细数据)""" return prompt async def _call_llm(self, prompt: str) -> str: """调用LLM""" try: response = await asyncio.to_thread( self.vn.chat_with_llm, question=prompt, system_prompt="你是一个专业的数据分析师,精通PostgreSQL语法,擅长设计有业务价值的数据查询。请严格按照JSON格式输出。特别注意:生成的问题和SQL都必须是单行文本,不能包含换行符。" ) if not response or not response.strip(): raise ValueError("LLM返回空响应") return response.strip() except Exception as e: self.logger.error(f"LLM调用失败: {e}") raise def _parse_qs_response(self, response: str) -> List[Dict[str, str]]: """解析Question-SQL响应""" try: # 提取JSON部分 import re json_match = re.search(r'```json\s*(.*?)\s*```', response, re.DOTALL) if json_match: json_str = json_match.group(1) else: json_str = response # 解析JSON qs_pairs = json.loads(json_str) if not isinstance(qs_pairs, list): raise ValueError("响应不是列表格式") return qs_pairs except json.JSONDecodeError as e: self.logger.error(f"JSON解析失败: {e}") self.logger.debug(f"原始响应: {response}") raise ValueError(f"无法解析LLM响应为JSON格式: {e}") def _validate_qs_pairs(self, qs_pairs: List[Dict], theme_name: str) -> List[Dict[str, str]]: """验证和清理Question-SQL对""" validated = [] for i, pair in enumerate(qs_pairs): if not isinstance(pair, dict): self.logger.warning(f"跳过无效格式的项 {i+1}") continue question = pair.get('question', '').strip() sql = pair.get('sql', '').strip() if not question or not sql: self.logger.warning(f"跳过空问题或SQL的项 {i+1}") continue # 清理question中的换行符,替换为空格 question = ' '.join(question.split()) # 清理SQL中的换行符和多余空格,压缩为单行 sql = ' '.join(sql.split()) # 确保SQL以分号结束 if not sql.endswith(';'): sql += ';' validated.append({ 'question': question, 'sql': sql }) self.logger.info(f"主题 '{theme_name}': 验证通过 {len(validated)}/{len(qs_pairs)} 个问题") return validated def _init_intermediate_file(self): """初始化中间结果文件""" timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') self.intermediate_file = self.output_dir / f"qs_intermediate_{timestamp}.json" self.intermediate_results = [] self.logger.info(f"中间结果文件: {self.intermediate_file}") async def _save_theme_results(self, theme_name: str, qs_pairs: List[Dict]): """保存单个主题的结果""" theme_result = { "theme": theme_name, "timestamp": datetime.now().isoformat(), "questions_count": len(qs_pairs), "questions": qs_pairs } self.intermediate_results.append(theme_result) # 立即保存到中间文件 if self.config['qs_generation']['save_intermediate']: try: with open(self.intermediate_file, 'w', encoding='utf-8') as f: json.dump(self.intermediate_results, f, ensure_ascii=False, indent=2) self.logger.debug(f"中间结果已更新: {self.intermediate_file}") except Exception as e: self.logger.warning(f"保存中间结果失败: {e}") def _save_intermediate_results(self) -> Path: """异常时保存中间结果""" if not self.intermediate_results: return None recovery_file = self.output_dir / f"qs_recovery_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" try: with open(recovery_file, 'w', encoding='utf-8') as f: json.dump({ "status": "interrupted", "timestamp": datetime.now().isoformat(), "completed_themes": len(self.intermediate_results), "results": self.intermediate_results }, f, ensure_ascii=False, indent=2) return recovery_file except Exception as e: self.logger.error(f"保存恢复文件失败: {e}") return None async def _save_final_results(self, all_qs_pairs: List[Dict]) -> Path: """保存最终结果""" timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') output_file = self.output_dir / f"{self.config['qs_generation']['output_file_prefix']}_{self.db_name}_{timestamp}_pair.json" try: with open(output_file, 'w', encoding='utf-8') as f: json.dump(all_qs_pairs, f, ensure_ascii=False, indent=2) self.logger.info(f"✅ 最终结果已保存到: {output_file}") return output_file except Exception as e: self.logger.error(f"保存最终结果失败: {e}") raise def _cleanup_intermediate_file(self): """清理中间文件""" if self.intermediate_file and self.intermediate_file.exists(): try: self.intermediate_file.unlink() self.logger.info("已清理中间文件") except Exception as e: self.logger.warning(f"清理中间文件失败: {e}") def _print_summary(self, report: Dict): """打印总结信息""" self.logger.info("=" * 60) self.logger.info("📊 生成总结") self.logger.info(f" ✅ 总主题数: {report['total_themes']}") self.logger.info(f" ✅ 成功主题: {report['successful_themes']}") if report['failed_themes']: self.logger.info(f" ❌ 失败主题: {len(report['failed_themes'])}") for theme in report['failed_themes']: self.logger.info(f" - {theme}") self.logger.info(f" 📝 总问题数: {report['total_questions']}") self.logger.info(f" 📁 输出文件: {report['output_file']}") self.logger.info(f" ⏱️ 执行时间: {report['execution_time']:.2f}秒") self.logger.info("=" * 60) async def _generate_metadata_file(self, themes: List[Dict]): """生成metadata.txt文件,包含INSERT语句""" metadata_file = self.output_dir / "metadata.txt" try: with open(metadata_file, 'w', encoding='utf-8') as f: f.write("-- Schema Tools生成的主题元数据\n") f.write(f"-- 业务背景: {self.business_context}\n") f.write(f"-- 生成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") f.write(f"-- 数据库: {self.db_name}\n\n") f.write("-- 创建表(如果不存在)\n") f.write("CREATE TABLE IF NOT EXISTS metadata (\n") f.write(" id SERIAL PRIMARY KEY, -- 主键\n") f.write(" topic_name VARCHAR(100) NOT NULL, -- 业务主题名称\n") f.write(" description TEXT, -- 业务主体说明\n") f.write(" related_tables TEXT[],\t\t\t -- 相关表名\n") f.write(" biz_entities TEXT[], -- 主要业务实体名称\n") f.write(" biz_metrics TEXT[], -- 主要业务指标名称\n") f.write(" created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP -- 插入时间\n") f.write(");\n\n") f.write("-- 插入主题数据\n") for theme in themes: # 获取字段值,使用新格式 topic_name = theme.get('topic_name', theme.get('name', '')) description = theme.get('description', '') # 处理related_tables related_tables = theme.get('related_tables', []) if isinstance(related_tables, list): tables_str = ','.join(related_tables) else: tables_str = '' # 处理biz_entities biz_entities = theme.get('biz_entities', []) if isinstance(biz_entities, list): entities_str = ','.join(biz_entities) else: entities_str = '' # 处理biz_metrics biz_metrics = theme.get('biz_metrics', []) if isinstance(biz_metrics, list): metrics_str = ','.join(biz_metrics) else: metrics_str = '' # 生成INSERT语句 f.write("INSERT INTO metadata(topic_name, description, related_tables, biz_entities, biz_metrics) VALUES\n") f.write("(\n") f.write(f" '{self._escape_sql_string(topic_name)}',\n") f.write(f" '{self._escape_sql_string(description)}',\n") f.write(f" '{tables_str}',\n") f.write(f" '{entities_str}',\n") f.write(f" '{metrics_str}'\n") f.write(");\n\n") self.logger.info(f"✅ metadata.txt文件已生成: {metadata_file}") return metadata_file except Exception as e: self.logger.error(f"生成metadata.txt文件失败: {e}") return None async def _generate_metadata_md_file(self, themes: List[Dict]): """生成metadata_detail.md文件""" metadata_md_file = self.output_dir / "metadata_detail.md" try: # 从themes中收集示例数据 sample_tables = set() sample_entities = set() sample_metrics = set() for theme in themes: related_tables = theme.get('related_tables', []) if isinstance(related_tables, list): sample_tables.update(related_tables[:2]) # 取前2个表作为示例 biz_entities = theme.get('biz_entities', []) if isinstance(biz_entities, list): sample_entities.update(biz_entities[:3]) # 取前3个实体作为示例 biz_metrics = theme.get('biz_metrics', []) if isinstance(biz_metrics, list): sample_metrics.update(biz_metrics[:3]) # 取前3个指标作为示例 # 转换为字符串格式,避免硬编码特定行业内容 tables_example = ', '.join(list(sample_tables)[:2]) if sample_tables else '数据表1, 数据表2' entities_example = ', '.join(list(sample_entities)[:3]) if sample_entities else '业务实体1, 业务实体2, 业务实体3' metrics_example = ', '.join(list(sample_metrics)[:3]) if sample_metrics else '业务指标1, 业务指标2, 业务指标3' with open(metadata_md_file, 'w', encoding='utf-8') as f: f.write("## metadata(存储分析主题元数据)\n\n") f.write("`metadata` 主要描述了当前数据库包含了哪些数据内容,哪些分析主题,哪些指标等等。\n\n") f.write("字段列表:\n\n") f.write("- `id` (serial) - 主键ID [主键, 非空]\n") f.write("- `topic_name` (varchar(100)) - 业务主题名称 [非空]\n") f.write("- `description` (text) - 业务主题说明\n") f.write(f"- `related_tables` (text[]) - 涉及的数据表 [示例: {tables_example}]\n") f.write(f"- `biz_entities` (text[]) - 主要业务实体名称 [示例: {entities_example}]\n") f.write(f"- `biz_metrics` (text[]) - 主要业务指标名称 [示例: {metrics_example}]\n") f.write("- `created_at` (timestamp) - 插入时间 [默认值: `CURRENT_TIMESTAMP`]\n\n") f.write("字段补充说明:\n\n") f.write("- `id` 为主键,自增;\n") f.write("- `related_tables` 用于建立主题与具体明细表的依赖关系;\n") f.write("- `biz_entities` 表示主题关注的核心对象,例如服务区、车辆、公司;\n") f.write("- `biz_metrics` 表示该主题关注的业务分析指标,例如营收对比、趋势变化、占比结构等。\n") self.logger.info(f"✅ metadata_detail.md文件已生成: {metadata_md_file}") return metadata_md_file except Exception as e: self.logger.error(f"生成metadata_detail.md文件失败: {e}") return None async def _generate_decision_prompt_with_llm(self, themes: List[Dict], md_contents: str) -> str: """使用LLM动态生成db_query_decision_prompt.txt的完整内容(基于纯表结构分析)""" try: # 构建LLM提示词 - 让LLM完全独立分析表结构 prompt = f"""你是一位资深的数据分析师,请直接分析以下数据库的表结构,独立判断业务范围和数据范围。 业务背景:{self.business_context} 数据库表结构详细信息: {md_contents} 分析任务: 请你直接从表结构、字段名称、字段类型、示例数据中推断业务逻辑,不要参考任何预设的业务主题。 分析要求: 1. **业务范围**:根据表名和核心业务字段,用一句话概括这个数据库支撑的业务领域 2. **数据范围**:根据具体的数据字段(如金额、数量、类型等),用一句话概括涉及的数据类型和范围 3. **核心业务实体**:从非技术字段中识别主要的业务对象(如表中的维度字段) 4. **关键业务指标**:从数值型字段和枚举字段中识别可以进行分析的指标 技术字段过滤规则(请忽略以下字段): - 主键字段:id、主键ID等 - 时间戳字段:create_ts、update_ts、delete_ts、created_at、updated_at等 - 版本字段:version、版本号等 - 操作人字段:created_by、updated_by、deleted_by等 请直接生成以下格式的业务分析报告(请严格按照格式,不要添加额外内容): === 数据库业务范围 === 当前数据库存储的是[业务描述]的相关数据,主要涉及[数据范围],包含以下业务数据: 核心业务实体: - 实体类型1:详细描述(基于实际字段和业务场景),主要字段:字段1、字段2、字段3 - 实体类型2:详细描述,主要字段:字段1、字段2、字段3 关键业务指标: - 指标类型1:详细描述(基于实际数值字段和分析需求) - 指标类型2:详细描述 要求: 1. 请完全基于表结构进行独立分析,从字段的业务含义出发,准确反映数据库的实际业务范围 2. 严格按照上述格式输出,不要添加分析依据、总结或其他额外内容 3. 输出内容到"指标类型2:详细描述"结束即可""" # 调用LLM生成内容 response = await self._call_llm(prompt) return response.strip() except Exception as e: self.logger.error(f"LLM生成决策提示内容失败: {e}") # 回退方案:生成基础内容 return self._generate_fallback_decision_content(themes) async def _generate_fallback_decision_content(self, themes: List[Dict]) -> str: """生成回退的决策提示内容(尝试用简化LLM调用)""" content = f"=== 数据库业务范围 ===\n" # 尝试用简化的LLM调用获取数据范围 try: # 构建简化的提示词 entities_sample = [] metrics_sample = [] for theme in themes[:3]: # 只取前3个主题作为示例 biz_entities = theme.get('biz_entities', []) if isinstance(biz_entities, list): entities_sample.extend(biz_entities[:2]) biz_metrics = theme.get('biz_metrics', []) if isinstance(biz_metrics, list): metrics_sample.extend(biz_metrics[:2]) # 简化的提示词 simple_prompt = f"""基于以下信息,用一句话概括{self.business_context}涉及的数据范围: 业务实体示例:{', '.join(entities_sample[:5])} 业务指标示例:{', '.join(metrics_sample[:5])} 请只回答数据范围,格式如:某某数据、某某信息、某某统计等""" data_range = await self._call_llm(simple_prompt) data_range = data_range.strip() # 如果LLM返回内容合理,则使用 if data_range and len(data_range) < 100: content += f"当前数据库存储的是{self.business_context}的相关数据,主要涉及{data_range},包含以下业务数据:\n" else: raise Exception("LLM返回内容不合理") except Exception as e: self.logger.warning(f"简化LLM调用也失败,使用完全兜底方案: {e}") # 真正的最后兜底 content += f"当前数据库存储的是{self.business_context}的相关数据,主要涉及相关业务数据,包含以下业务数据:\n" content += "核心业务实体:\n" # 收集所有实体 all_entities = set() for theme in themes: biz_entities = theme.get('biz_entities', []) if isinstance(biz_entities, list): all_entities.update(biz_entities) for entity in list(all_entities)[:8]: content += f"- {entity}:{entity}相关的业务信息\n" content += "关键业务指标:\n" # 收集所有指标 all_metrics = set() for theme in themes: biz_metrics = theme.get('biz_metrics', []) if isinstance(biz_metrics, list): all_metrics.update(biz_metrics) for metric in list(all_metrics)[:8]: content += f"- {metric}:{metric}相关的分析指标\n" return content async def _generate_decision_prompt_file(self, themes: List[Dict]): """生成db_query_decision_prompt.txt文件""" decision_prompt_file = self.output_dir / "db_query_decision_prompt.txt" try: # 读取MD内容作为LLM输入 md_contents = await self.md_analyzer.read_all_md_files() # 使用LLM动态生成决策提示内容 decision_content = await self._generate_decision_prompt_with_llm(themes, md_contents) # 写入文件 with open(decision_prompt_file, 'w', encoding='utf-8') as f: f.write(decision_content) self.logger.info(f"✅ db_query_decision_prompt.txt文件已生成: {decision_prompt_file}") return decision_prompt_file except Exception as e: self.logger.error(f"生成db_query_decision_prompt.txt文件失败: {e}") # 如果LLM调用失败,使用回退方案 try: fallback_content = await self._generate_fallback_decision_content(themes) with open(decision_prompt_file, 'w', encoding='utf-8') as f: f.write(fallback_content) self.logger.warning(f"⚠️ 使用回退方案生成了 {decision_prompt_file}") return decision_prompt_file except Exception as fallback_error: self.logger.error(f"回退方案也失败: {fallback_error}") return None def _escape_sql_string(self, value: str) -> str: """转义SQL字符串中的特殊字符""" if not value: return "" # 转义单引号 return value.replace("'", "''")