import os from openai import OpenAI from .base_llm_chat import BaseLLMChat class DeepSeekChat(BaseLLMChat): """DeepSeek AI聊天实现""" def __init__(self, config=None): print("...DeepSeekChat init...") super().__init__(config=config) if config is None: self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) return if "api_key" in config: # 使用配置中的base_url,如果没有则使用默认值 base_url = config.get("base_url", "https://api.deepseek.com") self.client = OpenAI( api_key=config["api_key"], base_url=base_url ) def submit_prompt(self, prompt, **kwargs) -> str: if prompt is None: raise Exception("Prompt is None") if len(prompt) == 0: raise Exception("Prompt is empty") # Count the number of tokens in the message log num_tokens = 0 for message in prompt: num_tokens += len(message["content"]) / 4 # 获取 stream 参数 stream_mode = kwargs.get("stream", self.config.get("stream", False) if self.config else False) # 获取 enable_thinking 参数 enable_thinking = kwargs.get("enable_thinking", self.config.get("enable_thinking", False) if self.config else False) # DeepSeek API约束:enable_thinking=True时建议使用stream=True # 如果stream=False但enable_thinking=True,则忽略enable_thinking if enable_thinking and not stream_mode: print("WARNING: enable_thinking=True 不生效,因为它需要 stream=True") enable_thinking = False # 确定使用的模型 model = None if kwargs.get("model", None) is not None: model = kwargs.get("model", None) elif kwargs.get("engine", None) is not None: model = kwargs.get("engine", None) elif self.config is not None and "engine" in self.config: model = self.config["engine"] elif self.config is not None and "model" in self.config: model = self.config["model"] else: # 根据 enable_thinking 选择模型 if enable_thinking: model = "deepseek-reasoner" else: if num_tokens > 3500: model = "deepseek-chat" else: model = "deepseek-chat" # 模型兼容性提示(但不强制切换) if enable_thinking and model not in ["deepseek-reasoner"]: print(f"提示:模型 {model} 可能不支持推理功能,推理相关参数将被忽略") print(f"\nUsing model {model} for {num_tokens} tokens (approx)") print(f"Enable thinking: {enable_thinking}, Stream mode: {stream_mode}") # 方案1:通过 system prompt 控制中文输出(DeepSeek 不支持 language 参数) # 检查配置中的语言设置,并在 system prompt 中添加中文指令 # language_setting = self.config.get("language", "").lower() if self.config else "" # print(f"DEBUG: language_setting='{language_setting}', model='{model}', enable_thinking={enable_thinking}") # if language_setting == "chinese" and enable_thinking: # print("DEBUG: ✅ 触发中文指令添加") # # 为推理模型添加中文思考指令 # chinese_instruction = {"role": "system", "content": "请用中文进行思考和回答。在推理过程中,请使用中文进行分析和思考。之间也请使用中文"} # # 如果第一条消息不是 system 消息,则添加中文指令 # if not prompt or prompt[0].get("role") != "system": # prompt = [chinese_instruction] + prompt # else: # # 如果已有 system 消息,则在其内容中添加中文指令 # existing_content = prompt[0]["content"] # prompt[0]["content"] = f"{existing_content}\n\n请用中文进行思考和回答。在推理过程中,请使用中文进行分析和思考。之间也请使用中文" # else: # print(f"DEBUG: ❌ 未触发中文指令 - language_setting==chinese: {language_setting == 'chinese'}, model==deepseek-reasoner: {model == 'deepseek-reasoner'}, enable_thinking: {enable_thinking}") # 构建 API 调用参数 api_params = { "model": model, "messages": prompt, "stop": None, "temperature": self.temperature, "stream": stream_mode, } # 过滤掉自定义参数,避免传递给 API # 注意:保留 language 参数,让 DeepSeek API 自己处理 filtered_kwargs = {k: v for k, v in kwargs.items() if k not in ['model', 'engine', 'enable_thinking', 'stream']} # 根据模型过滤不支持的参数 if model == "deepseek-reasoner": # deepseek-reasoner 不支持的参数 unsupported_params = ['top_p', 'presence_penalty', 'frequency_penalty', 'logprobs', 'top_logprobs'] for param in unsupported_params: if param in filtered_kwargs: print(f"警告:deepseek-reasoner 不支持参数 {param},已忽略") filtered_kwargs.pop(param, None) else: # deepseek-chat 等其他模型,只过滤明确会导致错误的参数 # 目前 deepseek-chat 支持大部分标准参数,暂不过滤 pass # 添加其他参数 api_params.update(filtered_kwargs) if stream_mode: # 流式处理模式 if model == "deepseek-reasoner" and enable_thinking: print("使用流式处理模式,启用推理功能") else: print("使用流式处理模式,常规聊天") response_stream = self.client.chat.completions.create(**api_params) if model == "deepseek-reasoner" and enable_thinking: # 推理模型的流式处理 collected_reasoning = [] collected_content = [] for chunk in response_stream: if hasattr(chunk, 'choices') and chunk.choices: delta = chunk.choices[0].delta # 收集推理内容 if hasattr(delta, 'reasoning_content') and delta.reasoning_content: collected_reasoning.append(delta.reasoning_content) # 收集最终答案 if hasattr(delta, 'content') and delta.content: collected_content.append(delta.content) # 可选:打印推理过程 if collected_reasoning: reasoning_text = "".join(collected_reasoning) print("Model reasoning process:\n", reasoning_text) # 方案2:返回包含 标签的完整内容,与 QianWen 保持一致 final_content = "".join(collected_content) if collected_reasoning: reasoning_text = "".join(collected_reasoning) return f"{reasoning_text}\n\n{final_content}" else: return final_content else: # 其他模型的流式处理(如 deepseek-chat) collected_content = [] for chunk in response_stream: if hasattr(chunk, 'choices') and chunk.choices: delta = chunk.choices[0].delta if hasattr(delta, 'content') and delta.content: collected_content.append(delta.content) return "".join(collected_content) else: # 非流式处理模式 if model == "deepseek-reasoner" and enable_thinking: print("使用非流式处理模式,启用推理功能") else: print("使用非流式处理模式,常规聊天") response = self.client.chat.completions.create(**api_params) if model == "deepseek-reasoner" and enable_thinking: # 推理模型的非流式处理 message = response.choices[0].message # 可选:打印推理过程 reasoning_content = "" if hasattr(message, 'reasoning_content') and message.reasoning_content: reasoning_content = message.reasoning_content print("Model reasoning process:\n", reasoning_content) # 方案2:返回包含 标签的完整内容,与 QianWen 保持一致 final_content = message.content if reasoning_content: return f"{reasoning_content}\n\n{final_content}" else: return final_content else: # 其他模型的非流式处理(如 deepseek-chat) return response.choices[0].message.content