citu_app.py 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. # 给dataops 对话助手返回结果
  2. from vanna.flask import VannaFlaskApp
  3. from vanna_llm_factory import create_vanna_instance
  4. from flask import request, jsonify
  5. import pandas as pd
  6. import common.result as result
  7. from datetime import datetime, timedelta
  8. from common.session_aware_cache import SessionAwareMemoryCache
  9. vn = create_vanna_instance()
  10. # 创建带时间戳的缓存
  11. timestamped_cache = SessionAwareMemoryCache()
  12. # 实例化 VannaFlaskApp,使用自定义缓存
  13. app = VannaFlaskApp(
  14. vn,
  15. cache=timestamped_cache, # 使用带时间戳的缓存
  16. title="辞图智能数据问答平台",
  17. logo = "https://www.citupro.com/img/logo-black-2.png",
  18. subtitle="让 AI 为你写 SQL",
  19. chart=False,
  20. allow_llm_to_see_data=True,
  21. ask_results_correct=True,
  22. followup_questions=True,
  23. debug=True
  24. )
  25. # 修改ask接口,支持前端传递session_id
  26. @app.flask_app.route('/api/v0/ask', methods=['POST'])
  27. def ask_full():
  28. req = request.get_json(force=True)
  29. question = req.get("question", None)
  30. browser_session_id = req.get("session_id", None) # 前端传递的会话ID
  31. if not question:
  32. return jsonify(result.failed(message="未提供问题", code=400)), 400
  33. # 如果使用WebSessionAwareMemoryCache
  34. if hasattr(app.cache, 'generate_id_with_browser_session') and browser_session_id:
  35. # 这里需要修改vanna的ask方法来支持传递session_id
  36. # 或者预先调用generate_id来建立会话关联
  37. conversation_id = app.cache.generate_id_with_browser_session(
  38. question=question,
  39. browser_session_id=browser_session_id
  40. )
  41. try:
  42. sql, df, fig = vn.ask(
  43. question=question,
  44. print_results=False,
  45. visualize=False,
  46. allow_llm_to_see_data=True
  47. )
  48. rows, columns = [], []
  49. summary = None
  50. if isinstance(df, pd.DataFrame) and not df.empty:
  51. rows = df.head(1000).to_dict(orient="records")
  52. columns = list(df.columns)
  53. # 生成数据摘要
  54. try:
  55. summary = vn.generate_summary(question=question, df=df)
  56. print(f"[INFO] 成功生成摘要: {summary}")
  57. except Exception as e:
  58. print(f"[WARNING] 生成摘要失败: {str(e)}")
  59. summary = None
  60. return jsonify(result.success(data={
  61. "sql": sql,
  62. "rows": rows,
  63. "columns": columns,
  64. "summary": summary, # 添加摘要到返回结果
  65. "conversation_id": conversation_id if 'conversation_id' in locals() else None,
  66. "session_id": browser_session_id
  67. }))
  68. except Exception as e:
  69. print(f"[ERROR] ask_full执行失败: {str(e)}")
  70. return jsonify(result.failed(
  71. message=f"查询处理失败: {str(e)}",
  72. code=500
  73. )), 500
  74. @app.flask_app.route('/api/v1/citu_train_question_sql', methods=['POST'])
  75. def citu_train_question_sql():
  76. try:
  77. req = request.get_json(force=True)
  78. question = req.get('question')
  79. sql = req.get('sql')
  80. if not sql:
  81. return jsonify(result.failed(
  82. message="'sql' are required",
  83. code=400
  84. )), 400
  85. # 正确的调用方式:同时传递question和sql
  86. if question:
  87. training_id = vn.train(question=question, sql=sql)
  88. print(f"训练成功,训练ID为:{training_id},问题:{question},SQL:{sql}")
  89. else:
  90. training_id = vn.train(sql=sql)
  91. print(f"训练成功,训练ID为:{training_id},SQL:{sql}")
  92. return jsonify(result.success(data={
  93. "training_id": training_id,
  94. "message": "Question-SQL pair trained successfully"
  95. }))
  96. except Exception as e:
  97. return jsonify(result.failed(
  98. message=f"Training failed: {str(e)}",
  99. code=500
  100. )), 500
  101. # ==================== 日常管理API ====================
  102. @app.flask_app.route('/api/v0/cache_overview', methods=['GET'])
  103. def cache_overview():
  104. """日常管理:轻量概览 - 合并原cache_inspect的核心功能"""
  105. try:
  106. cache = app.cache
  107. result_data = {
  108. 'overview_summary': {
  109. 'total_conversations': 0,
  110. 'total_sessions': 0,
  111. 'query_time': datetime.now().isoformat()
  112. },
  113. 'recent_conversations': [], # 最近的对话
  114. 'session_summary': [] # 会话摘要
  115. }
  116. if hasattr(cache, 'cache') and isinstance(cache.cache, dict):
  117. result_data['overview_summary']['total_conversations'] = len(cache.cache)
  118. # 获取会话信息
  119. if hasattr(cache, 'get_all_sessions'):
  120. all_sessions = cache.get_all_sessions()
  121. result_data['overview_summary']['total_sessions'] = len(all_sessions)
  122. # 会话摘要(按最近活动排序)
  123. session_list = []
  124. for session_id, session_data in all_sessions.items():
  125. session_summary = {
  126. 'session_id': session_id,
  127. 'start_time': session_data['start_time'].isoformat(),
  128. 'conversation_count': session_data.get('conversation_count', 0),
  129. 'duration_seconds': session_data.get('session_duration_seconds', 0),
  130. 'last_activity': session_data.get('last_activity', session_data['start_time']).isoformat(),
  131. 'is_active': (datetime.now() - session_data.get('last_activity', session_data['start_time'])).total_seconds() < 1800 # 30分钟内活跃
  132. }
  133. session_list.append(session_summary)
  134. # 按最后活动时间排序
  135. session_list.sort(key=lambda x: x['last_activity'], reverse=True)
  136. result_data['session_summary'] = session_list
  137. # 最近的对话(最多显示10个)
  138. conversation_list = []
  139. for conversation_id, conversation_data in cache.cache.items():
  140. conversation_start_time = cache.conversation_start_times.get(conversation_id)
  141. conversation_info = {
  142. 'conversation_id': conversation_id,
  143. 'conversation_start_time': conversation_start_time.isoformat() if conversation_start_time else None,
  144. 'session_id': cache.conversation_to_session.get(conversation_id),
  145. 'has_question': 'question' in conversation_data,
  146. 'has_sql': 'sql' in conversation_data,
  147. 'has_data': 'df' in conversation_data and conversation_data['df'] is not None,
  148. 'question_preview': conversation_data.get('question', '')[:80] + '...' if len(conversation_data.get('question', '')) > 80 else conversation_data.get('question', ''),
  149. }
  150. # 计算对话持续时间
  151. if conversation_start_time:
  152. duration = datetime.now() - conversation_start_time
  153. conversation_info['conversation_duration_seconds'] = duration.total_seconds()
  154. conversation_list.append(conversation_info)
  155. # 按对话开始时间排序,显示最新的10个
  156. conversation_list.sort(key=lambda x: x['conversation_start_time'] or '', reverse=True)
  157. result_data['recent_conversations'] = conversation_list[:10]
  158. return jsonify(result.success(data=result_data))
  159. except Exception as e:
  160. return jsonify(result.failed(
  161. message=f"获取缓存概览失败: {str(e)}",
  162. code=500
  163. )), 500
  164. @app.flask_app.route('/api/v0/cache_stats', methods=['GET'])
  165. def cache_stats():
  166. """日常管理:统计信息 - 合并原session_stats和cache_stats功能"""
  167. try:
  168. cache = app.cache
  169. current_time = datetime.now()
  170. stats = {
  171. 'basic_stats': {
  172. 'total_sessions': len(getattr(cache, 'session_info', {})),
  173. 'total_conversations': len(getattr(cache, 'cache', {})),
  174. 'active_sessions': 0, # 最近30分钟有活动
  175. 'average_conversations_per_session': 0
  176. },
  177. 'time_distribution': {
  178. 'sessions': {
  179. 'last_1_hour': 0,
  180. 'last_6_hours': 0,
  181. 'last_24_hours': 0,
  182. 'last_7_days': 0,
  183. 'older': 0
  184. },
  185. 'conversations': {
  186. 'last_1_hour': 0,
  187. 'last_6_hours': 0,
  188. 'last_24_hours': 0,
  189. 'last_7_days': 0,
  190. 'older': 0
  191. }
  192. },
  193. 'session_details': [],
  194. 'time_ranges': {
  195. 'oldest_session': None,
  196. 'newest_session': None,
  197. 'oldest_conversation': None,
  198. 'newest_conversation': None
  199. }
  200. }
  201. # 会话统计
  202. if hasattr(cache, 'session_info'):
  203. session_times = []
  204. total_conversations = 0
  205. for session_id, session_data in cache.session_info.items():
  206. start_time = session_data['start_time']
  207. session_times.append(start_time)
  208. conversation_count = len(session_data.get('conversations', []))
  209. total_conversations += conversation_count
  210. # 检查活跃状态
  211. last_activity = session_data.get('last_activity', session_data['start_time'])
  212. if (current_time - last_activity).total_seconds() < 1800:
  213. stats['basic_stats']['active_sessions'] += 1
  214. # 时间分布统计
  215. age_hours = (current_time - start_time).total_seconds() / 3600
  216. if age_hours <= 1:
  217. stats['time_distribution']['sessions']['last_1_hour'] += 1
  218. elif age_hours <= 6:
  219. stats['time_distribution']['sessions']['last_6_hours'] += 1
  220. elif age_hours <= 24:
  221. stats['time_distribution']['sessions']['last_24_hours'] += 1
  222. elif age_hours <= 168: # 7 days
  223. stats['time_distribution']['sessions']['last_7_days'] += 1
  224. else:
  225. stats['time_distribution']['sessions']['older'] += 1
  226. # 会话详细信息
  227. session_duration = current_time - start_time
  228. stats['session_details'].append({
  229. 'session_id': session_id,
  230. 'start_time': start_time.isoformat(),
  231. 'last_activity': last_activity.isoformat(),
  232. 'conversation_count': conversation_count,
  233. 'duration_seconds': session_duration.total_seconds(),
  234. 'duration_formatted': str(session_duration),
  235. 'is_active': (current_time - last_activity).total_seconds() < 1800,
  236. 'browser_session_id': session_data.get('browser_session_id')
  237. })
  238. # 计算平均值
  239. if len(cache.session_info) > 0:
  240. stats['basic_stats']['average_conversations_per_session'] = total_conversations / len(cache.session_info)
  241. # 时间范围
  242. if session_times:
  243. stats['time_ranges']['oldest_session'] = min(session_times).isoformat()
  244. stats['time_ranges']['newest_session'] = max(session_times).isoformat()
  245. # 对话统计
  246. if hasattr(cache, 'conversation_start_times'):
  247. conversation_times = []
  248. for conv_time in cache.conversation_start_times.values():
  249. conversation_times.append(conv_time)
  250. age_hours = (current_time - conv_time).total_seconds() / 3600
  251. if age_hours <= 1:
  252. stats['time_distribution']['conversations']['last_1_hour'] += 1
  253. elif age_hours <= 6:
  254. stats['time_distribution']['conversations']['last_6_hours'] += 1
  255. elif age_hours <= 24:
  256. stats['time_distribution']['conversations']['last_24_hours'] += 1
  257. elif age_hours <= 168:
  258. stats['time_distribution']['conversations']['last_7_days'] += 1
  259. else:
  260. stats['time_distribution']['conversations']['older'] += 1
  261. if conversation_times:
  262. stats['time_ranges']['oldest_conversation'] = min(conversation_times).isoformat()
  263. stats['time_ranges']['newest_conversation'] = max(conversation_times).isoformat()
  264. # 按最近活动排序会话详情
  265. stats['session_details'].sort(key=lambda x: x['last_activity'], reverse=True)
  266. return jsonify(result.success(data=stats))
  267. except Exception as e:
  268. return jsonify(result.failed(
  269. message=f"获取缓存统计失败: {str(e)}",
  270. code=500
  271. )), 500
  272. # ==================== 高级功能API ====================
  273. @app.flask_app.route('/api/v0/cache_export', methods=['GET'])
  274. def cache_export():
  275. """高级功能:完整导出 - 保持原cache_raw_export的完整功能"""
  276. try:
  277. cache = app.cache
  278. # 验证缓存的实际结构
  279. if not hasattr(cache, 'cache'):
  280. return jsonify(result.failed(message="缓存对象没有cache属性", code=500)), 500
  281. if not isinstance(cache.cache, dict):
  282. return jsonify(result.failed(message="缓存不是字典类型", code=500)), 500
  283. # 定义JSON序列化辅助函数
  284. def make_json_serializable(obj):
  285. """将对象转换为JSON可序列化的格式"""
  286. if obj is None:
  287. return None
  288. elif isinstance(obj, (str, int, float, bool)):
  289. return obj
  290. elif isinstance(obj, (list, tuple)):
  291. return [make_json_serializable(item) for item in obj]
  292. elif isinstance(obj, dict):
  293. return {str(k): make_json_serializable(v) for k, v in obj.items()}
  294. elif hasattr(obj, 'isoformat'): # datetime objects
  295. return obj.isoformat()
  296. elif hasattr(obj, 'item'): # numpy scalars
  297. return obj.item()
  298. elif hasattr(obj, 'tolist'): # numpy arrays
  299. return obj.tolist()
  300. elif hasattr(obj, '__dict__'): # pandas dtypes and other objects
  301. return str(obj)
  302. else:
  303. return str(obj)
  304. # 获取完整的原始缓存数据
  305. raw_cache = cache.cache
  306. # 获取会话和对话时间信息
  307. conversation_times = getattr(cache, 'conversation_start_times', {})
  308. session_info = getattr(cache, 'session_info', {})
  309. conversation_to_session = getattr(cache, 'conversation_to_session', {})
  310. export_data = {
  311. 'export_metadata': {
  312. 'export_time': datetime.now().isoformat(),
  313. 'total_conversations': len(raw_cache),
  314. 'total_sessions': len(session_info),
  315. 'cache_type': type(cache).__name__,
  316. 'cache_object_info': str(cache),
  317. 'has_session_times': bool(session_info),
  318. 'has_conversation_times': bool(conversation_times)
  319. },
  320. 'session_info': {
  321. session_id: {
  322. 'start_time': session_data['start_time'].isoformat(),
  323. 'last_activity': session_data.get('last_activity', session_data['start_time']).isoformat(),
  324. 'conversations': session_data['conversations'],
  325. 'conversation_count': len(session_data['conversations']),
  326. 'browser_session_id': session_data.get('browser_session_id'),
  327. 'user_info': session_data.get('user_info', {})
  328. }
  329. for session_id, session_data in session_info.items()
  330. },
  331. 'conversation_times': {
  332. conversation_id: start_time.isoformat()
  333. for conversation_id, start_time in conversation_times.items()
  334. },
  335. 'conversation_to_session_mapping': conversation_to_session,
  336. 'conversations': {}
  337. }
  338. # 处理每个对话的完整数据
  339. for conversation_id, conversation_data in raw_cache.items():
  340. # 获取时间信息
  341. conversation_start_time = conversation_times.get(conversation_id)
  342. session_id = conversation_to_session.get(conversation_id)
  343. session_start_time = None
  344. if session_id and session_id in session_info:
  345. session_start_time = session_info[session_id]['start_time']
  346. processed_conversation = {
  347. 'conversation_id': conversation_id,
  348. 'conversation_start_time': conversation_start_time.isoformat() if conversation_start_time else None,
  349. 'session_id': session_id,
  350. 'session_start_time': session_start_time.isoformat() if session_start_time else None,
  351. 'field_count': len(conversation_data),
  352. 'fields': {}
  353. }
  354. # 添加时间计算
  355. if conversation_start_time:
  356. conversation_duration = datetime.now() - conversation_start_time
  357. processed_conversation['conversation_duration_seconds'] = conversation_duration.total_seconds()
  358. processed_conversation['conversation_duration_formatted'] = str(conversation_duration)
  359. if session_start_time:
  360. session_duration = datetime.now() - session_start_time
  361. processed_conversation['session_duration_seconds'] = session_duration.total_seconds()
  362. processed_conversation['session_duration_formatted'] = str(session_duration)
  363. # 处理每个字段,确保JSON序列化安全
  364. for field_name, field_value in conversation_data.items():
  365. field_info = {
  366. 'field_name': field_name,
  367. 'data_type': type(field_value).__name__,
  368. 'is_none': field_value is None
  369. }
  370. try:
  371. if field_value is None:
  372. field_info['value'] = None
  373. elif field_name in ['conversation_start_time', 'session_start_time']:
  374. # 处理时间字段
  375. field_info['content'] = make_json_serializable(field_value)
  376. elif field_name == 'df' and field_value is not None:
  377. # DataFrame的安全处理
  378. if hasattr(field_value, 'to_dict'):
  379. # 安全地处理dtypes
  380. try:
  381. dtypes_dict = {}
  382. for col, dtype in field_value.dtypes.items():
  383. dtypes_dict[col] = str(dtype)
  384. except Exception:
  385. dtypes_dict = {"error": "无法序列化dtypes"}
  386. # 安全地处理内存使用
  387. try:
  388. memory_usage = field_value.memory_usage(deep=True)
  389. memory_dict = {}
  390. for idx, usage in memory_usage.items():
  391. memory_dict[str(idx)] = int(usage) if hasattr(usage, 'item') else int(usage)
  392. except Exception:
  393. memory_dict = {"error": "无法获取内存使用信息"}
  394. field_info.update({
  395. 'dataframe_info': {
  396. 'shape': list(field_value.shape),
  397. 'columns': list(field_value.columns),
  398. 'dtypes': dtypes_dict,
  399. 'index_info': {
  400. 'type': type(field_value.index).__name__,
  401. 'length': len(field_value.index)
  402. }
  403. },
  404. 'data': make_json_serializable(field_value.to_dict('records')),
  405. 'memory_usage': memory_dict
  406. })
  407. else:
  408. field_info['value'] = str(field_value)
  409. field_info['note'] = 'not_standard_dataframe'
  410. elif field_name == 'fig_json':
  411. # 图表JSON数据处理
  412. if isinstance(field_value, str):
  413. try:
  414. import json
  415. parsed_fig = json.loads(field_value)
  416. field_info.update({
  417. 'json_valid': True,
  418. 'json_size_bytes': len(field_value),
  419. 'plotly_structure': {
  420. 'has_data': 'data' in parsed_fig,
  421. 'has_layout': 'layout' in parsed_fig,
  422. 'data_traces_count': len(parsed_fig.get('data', [])),
  423. },
  424. 'raw_json': field_value
  425. })
  426. except json.JSONDecodeError:
  427. field_info.update({
  428. 'json_valid': False,
  429. 'raw_content': str(field_value)
  430. })
  431. else:
  432. field_info['value'] = make_json_serializable(field_value)
  433. elif field_name == 'followup_questions':
  434. # 后续问题列表
  435. field_info.update({
  436. 'content': make_json_serializable(field_value)
  437. })
  438. elif field_name in ['question', 'sql', 'summary']:
  439. # 文本字段
  440. if isinstance(field_value, str):
  441. field_info.update({
  442. 'text_length': len(field_value),
  443. 'content': field_value
  444. })
  445. else:
  446. field_info['value'] = make_json_serializable(field_value)
  447. else:
  448. # 未知字段的安全处理
  449. field_info['content'] = make_json_serializable(field_value)
  450. except Exception as e:
  451. field_info.update({
  452. 'processing_error': str(e),
  453. 'fallback_value': str(field_value)[:500] + '...' if len(str(field_value)) > 500 else str(field_value)
  454. })
  455. processed_conversation['fields'][field_name] = field_info
  456. export_data['conversations'][conversation_id] = processed_conversation
  457. # 添加缓存统计信息
  458. field_frequency = {}
  459. data_types_found = set()
  460. total_dataframes = 0
  461. total_questions = 0
  462. for conv_data in export_data['conversations'].values():
  463. for field_name, field_info in conv_data['fields'].items():
  464. field_frequency[field_name] = field_frequency.get(field_name, 0) + 1
  465. data_types_found.add(field_info['data_type'])
  466. if field_name == 'df' and not field_info['is_none']:
  467. total_dataframes += 1
  468. if field_name == 'question' and not field_info['is_none']:
  469. total_questions += 1
  470. export_data['cache_statistics'] = {
  471. 'field_frequency': field_frequency,
  472. 'data_types_found': list(data_types_found),
  473. 'total_dataframes': total_dataframes,
  474. 'total_questions': total_questions,
  475. 'has_session_timing': 'session_start_time' in field_frequency,
  476. 'has_conversation_timing': 'conversation_start_time' in field_frequency
  477. }
  478. return jsonify(result.success(data=export_data))
  479. except Exception as e:
  480. import traceback
  481. error_details = {
  482. 'error_message': str(e),
  483. 'error_type': type(e).__name__,
  484. 'traceback': traceback.format_exc()
  485. }
  486. return jsonify(result.failed(
  487. message=f"导出缓存失败: {str(e)}",
  488. code=500,
  489. data=error_details
  490. )), 500
  491. # ==================== 清理功能API ====================
  492. @app.flask_app.route('/api/v0/cache_preview_cleanup', methods=['POST'])
  493. def cache_preview_cleanup():
  494. """清理功能:预览删除操作 - 保持原功能"""
  495. try:
  496. req = request.get_json(force=True)
  497. # 时间条件 - 支持三种方式
  498. older_than_hours = req.get('older_than_hours')
  499. older_than_days = req.get('older_than_days')
  500. before_timestamp = req.get('before_timestamp') # YYYY-MM-DD HH:MM:SS 格式
  501. cache = app.cache
  502. # 计算截止时间
  503. cutoff_time = None
  504. time_condition = None
  505. if older_than_hours:
  506. cutoff_time = datetime.now() - timedelta(hours=older_than_hours)
  507. time_condition = f"older_than_hours: {older_than_hours}"
  508. elif older_than_days:
  509. cutoff_time = datetime.now() - timedelta(days=older_than_days)
  510. time_condition = f"older_than_days: {older_than_days}"
  511. elif before_timestamp:
  512. try:
  513. # 支持 YYYY-MM-DD HH:MM:SS 格式
  514. cutoff_time = datetime.strptime(before_timestamp, '%Y-%m-%d %H:%M:%S')
  515. time_condition = f"before_timestamp: {before_timestamp}"
  516. except ValueError:
  517. return jsonify(result.failed(
  518. message="before_timestamp格式错误,请使用 YYYY-MM-DD HH:MM:SS 格式",
  519. code=400
  520. )), 400
  521. else:
  522. return jsonify(result.failed(
  523. message="必须提供时间条件:older_than_hours, older_than_days 或 before_timestamp (YYYY-MM-DD HH:MM:SS)",
  524. code=400
  525. )), 400
  526. preview = {
  527. 'time_condition': time_condition,
  528. 'cutoff_time': cutoff_time.isoformat(),
  529. 'will_be_removed': {
  530. 'sessions': []
  531. },
  532. 'will_be_kept': {
  533. 'sessions_count': 0,
  534. 'conversations_count': 0
  535. },
  536. 'summary': {
  537. 'sessions_to_remove': 0,
  538. 'conversations_to_remove': 0,
  539. 'sessions_to_keep': 0,
  540. 'conversations_to_keep': 0
  541. }
  542. }
  543. # 预览按session删除
  544. sessions_to_remove_count = 0
  545. conversations_to_remove_count = 0
  546. for session_id, session_data in cache.session_info.items():
  547. session_preview = {
  548. 'session_id': session_id,
  549. 'start_time': session_data['start_time'].isoformat(),
  550. 'conversation_count': len(session_data['conversations']),
  551. 'conversations': []
  552. }
  553. # 添加conversation详情
  554. for conv_id in session_data['conversations']:
  555. if conv_id in cache.cache:
  556. conv_data = cache.cache[conv_id]
  557. session_preview['conversations'].append({
  558. 'conversation_id': conv_id,
  559. 'question': conv_data.get('question', '')[:50] + '...' if conv_data.get('question') else '',
  560. 'start_time': cache.conversation_start_times.get(conv_id, '').isoformat() if cache.conversation_start_times.get(conv_id) else ''
  561. })
  562. if session_data['start_time'] < cutoff_time:
  563. preview['will_be_removed']['sessions'].append(session_preview)
  564. sessions_to_remove_count += 1
  565. conversations_to_remove_count += len(session_data['conversations'])
  566. else:
  567. preview['will_be_kept']['sessions_count'] += 1
  568. preview['will_be_kept']['conversations_count'] += len(session_data['conversations'])
  569. # 更新摘要统计
  570. preview['summary'] = {
  571. 'sessions_to_remove': sessions_to_remove_count,
  572. 'conversations_to_remove': conversations_to_remove_count,
  573. 'sessions_to_keep': preview['will_be_kept']['sessions_count'],
  574. 'conversations_to_keep': preview['will_be_kept']['conversations_count']
  575. }
  576. return jsonify(result.success(data=preview))
  577. except Exception as e:
  578. return jsonify(result.failed(
  579. message=f"预览清理操作失败: {str(e)}",
  580. code=500
  581. )), 500
  582. @app.flask_app.route('/api/v0/cache_cleanup', methods=['POST'])
  583. def cache_cleanup():
  584. """清理功能:实际删除缓存 - 保持原功能"""
  585. try:
  586. req = request.get_json(force=True)
  587. # 时间条件 - 支持三种方式
  588. older_than_hours = req.get('older_than_hours')
  589. older_than_days = req.get('older_than_days')
  590. before_timestamp = req.get('before_timestamp') # YYYY-MM-DD HH:MM:SS 格式
  591. cache = app.cache
  592. if not hasattr(cache, 'session_info'):
  593. return jsonify(result.failed(
  594. message="缓存不支持会话功能",
  595. code=400
  596. )), 400
  597. # 计算截止时间
  598. cutoff_time = None
  599. time_condition = None
  600. if older_than_hours:
  601. cutoff_time = datetime.now() - timedelta(hours=older_than_hours)
  602. time_condition = f"older_than_hours: {older_than_hours}"
  603. elif older_than_days:
  604. cutoff_time = datetime.now() - timedelta(days=older_than_days)
  605. time_condition = f"older_than_days: {older_than_days}"
  606. elif before_timestamp:
  607. try:
  608. # 支持 YYYY-MM-DD HH:MM:SS 格式
  609. cutoff_time = datetime.strptime(before_timestamp, '%Y-%m-%d %H:%M:%S')
  610. time_condition = f"before_timestamp: {before_timestamp}"
  611. except ValueError:
  612. return jsonify(result.failed(
  613. message="before_timestamp格式错误,请使用 YYYY-MM-DD HH:MM:SS 格式",
  614. code=400
  615. )), 400
  616. else:
  617. return jsonify(result.failed(
  618. message="必须提供时间条件:older_than_hours, older_than_days 或 before_timestamp (YYYY-MM-DD HH:MM:SS)",
  619. code=400
  620. )), 400
  621. cleanup_stats = {
  622. 'time_condition': time_condition,
  623. 'cutoff_time': cutoff_time.isoformat(),
  624. 'sessions_removed': 0,
  625. 'conversations_removed': 0,
  626. 'sessions_kept': 0,
  627. 'conversations_kept': 0,
  628. 'removed_session_ids': [],
  629. 'removed_conversation_ids': []
  630. }
  631. # 按session删除
  632. sessions_to_remove = []
  633. for session_id, session_data in cache.session_info.items():
  634. if session_data['start_time'] < cutoff_time:
  635. sessions_to_remove.append(session_id)
  636. # 删除符合条件的sessions及其所有conversations
  637. for session_id in sessions_to_remove:
  638. session_data = cache.session_info[session_id]
  639. conversations_in_session = session_data['conversations'].copy()
  640. # 删除session中的所有conversations
  641. for conv_id in conversations_in_session:
  642. if conv_id in cache.cache:
  643. del cache.cache[conv_id]
  644. cleanup_stats['conversations_removed'] += 1
  645. cleanup_stats['removed_conversation_ids'].append(conv_id)
  646. # 清理conversation相关的时间记录
  647. if hasattr(cache, 'conversation_start_times') and conv_id in cache.conversation_start_times:
  648. del cache.conversation_start_times[conv_id]
  649. if hasattr(cache, 'conversation_to_session') and conv_id in cache.conversation_to_session:
  650. del cache.conversation_to_session[conv_id]
  651. # 删除session记录
  652. del cache.session_info[session_id]
  653. cleanup_stats['sessions_removed'] += 1
  654. cleanup_stats['removed_session_ids'].append(session_id)
  655. # 统计保留的sessions和conversations
  656. cleanup_stats['sessions_kept'] = len(cache.session_info)
  657. cleanup_stats['conversations_kept'] = len(cache.cache)
  658. return jsonify(result.success(data=cleanup_stats))
  659. except Exception as e:
  660. return jsonify(result.failed(
  661. message=f"清理缓存失败: {str(e)}",
  662. code=500
  663. )), 500
  664. # 前端JavaScript示例 - 如何维持会话
  665. """
  666. // 前端需要维护一个会话ID
  667. class ChatSession {
  668. constructor() {
  669. // 从localStorage获取或创建新的会话ID
  670. this.sessionId = localStorage.getItem('chat_session_id') || this.generateSessionId();
  671. localStorage.setItem('chat_session_id', this.sessionId);
  672. }
  673. generateSessionId() {
  674. return 'session_' + Date.now() + '_' + Math.random().toString(36).substr(2, 9);
  675. }
  676. async askQuestion(question) {
  677. const response = await fetch('/api/v0/ask', {
  678. method: 'POST',
  679. headers: {
  680. 'Content-Type': 'application/json',
  681. },
  682. body: JSON.stringify({
  683. question: question,
  684. session_id: this.sessionId // 关键:传递会话ID
  685. })
  686. });
  687. return await response.json();
  688. }
  689. // 开始新会话
  690. startNewSession() {
  691. this.sessionId = this.generateSessionId();
  692. localStorage.setItem('chat_session_id', this.sessionId);
  693. }
  694. }
  695. // 使用示例
  696. const chatSession = new ChatSession();
  697. chatSession.askQuestion("各年龄段客户的流失率如何?");
  698. """
  699. print("正在启动Flask应用: http://localhost:8084")
  700. app.run(host="0.0.0.0", port=8084, debug=True)