123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- import asyncio
- import json
- import logging
- from typing import List, Dict, Any
- from data_pipeline.config import SCHEMA_TOOLS_CONFIG
- class ThemeExtractor:
- """主题提取器"""
-
- def __init__(self, vn, business_context: str):
- """
- 初始化主题提取器
-
- Args:
- vn: vanna实例
- business_context: 业务上下文
- """
- self.vn = vn
- self.business_context = business_context
- self.logger = logging.getLogger("schema_tools.ThemeExtractor")
- self.config = SCHEMA_TOOLS_CONFIG
-
- async def extract_themes(self, md_contents: str) -> List[Dict[str, Any]]:
- """
- 从MD内容中提取分析主题
-
- Args:
- md_contents: 所有MD文件的组合内容
-
- Returns:
- 主题列表
- """
- theme_count = self.config['qs_generation']['theme_count']
-
- prompt = self._build_theme_extraction_prompt(md_contents, theme_count)
-
- try:
- # 调用LLM提取主题
- response = await self._call_llm(prompt)
-
- # 解析响应
- themes = self._parse_theme_response(response)
-
- self.logger.info(f"成功提取 {len(themes)} 个分析主题")
-
- return themes
-
- except Exception as e:
- self.logger.error(f"主题提取失败: {e}")
- raise
-
- def _build_theme_extraction_prompt(self, md_contents: str, theme_count: int) -> str:
- """构建主题提取的prompt"""
- prompt = f"""你是一位经验丰富的业务数据分析师,正在分析{self.business_context}的数据库。
- 以下是数据库中所有表的详细结构说明:
- {md_contents}
- 基于对这些表结构的理解,请从业务分析的角度提出 {theme_count} 个数据查询分析主题。
- 要求:
- 1. 每个主题应该有明确的业务价值和分析目标
- 2. 主题之间应该有所区别,覆盖不同的业务领域
- 3. 你需要自行决定每个主题应该涉及哪些表(使用实际存在的表名)
- 4. 主题应该体现实际业务场景的数据分析需求
- 5. 考虑时间维度、对比分析、排名统计等多种分析角度
- 6. 在选择业务实体时,请忽略以下技术性字段:
- - id、主键ID等标识字段
- - create_time、created_at、create_ts等创建时间字段
- - update_time、updated_at、update_ts等更新时间字段
- - delete_time、deleted_at、delete_ts等删除时间字段
- - version、版本号等版本控制字段
- - created_by、updated_by、deleted_by等操作人字段
- 7. 重点关注具有业务含义的实体字段和指标
- 请以JSON格式输出:
- ```json
- {{
- "themes": [
- {{
- "topic_name": "日营业数据分析",
- "description": "基于 bss_business_day_data 表,分析每个服务区和档口每天的营业收入、订单数量、支付方式等",
- "related_tables": ["bss_business_day_data", "bss_branch", "bss_service_area"],
- "biz_entities": ["服务区", "档口", "支付方式", "营收"],
- "biz_metrics": ["收入趋势", "服务区对比", "支付方式分布"]
- }}
- ]
- }}
- ```
- 请确保:
- - topic_name 简洁明了(10字以内)
- - description 详细说明分析目标和价值(50字左右)
- - related_tables 列出该主题需要用到的表名(数组格式)
- - biz_entities 列出3-5个主要业务实体(表的维度字段或非数值型字段,如服务区、公司、车辆等)
- - biz_metrics 列出3-5个主要业务指标名称(统计指标,如收入趋势、对比分析等)"""
-
- return prompt
-
- async def _call_llm(self, prompt: str) -> str:
- """调用LLM"""
- try:
- # 使用vanna的chat_with_llm方法
- response = await asyncio.to_thread(
- self.vn.chat_with_llm,
- question=prompt,
- system_prompt="你是一个专业的数据分析师,擅长从业务角度设计数据分析主题和查询方案。请严格按照要求的JSON格式输出。"
- )
-
- if not response or not response.strip():
- raise ValueError("LLM返回空响应")
-
- return response.strip()
-
- except Exception as e:
- self.logger.error(f"LLM调用失败: {e}")
- raise
-
- def _parse_theme_response(self, response: str) -> List[Dict[str, Any]]:
- """解析LLM的主题响应"""
- try:
- # 提取JSON部分
- import re
- json_match = re.search(r'```json\s*(.*?)\s*```', response, re.DOTALL)
- if json_match:
- json_str = json_match.group(1)
- else:
- # 尝试直接解析
- json_str = response
-
- # 解析JSON
- data = json.loads(json_str)
- themes = data.get('themes', [])
-
- # 验证和标准化主题格式
- validated_themes = []
- for theme in themes:
- # 兼容旧格式(name -> topic_name)
- if 'name' in theme and 'topic_name' not in theme:
- theme['topic_name'] = theme['name']
-
- # 验证必需字段
- required_fields = ['topic_name', 'description', 'related_tables']
- if all(key in theme for key in required_fields):
- # 确保related_tables是数组
- if isinstance(theme['related_tables'], str):
- theme['related_tables'] = [theme['related_tables']]
-
- # 确保biz_entities存在且是数组
- if 'biz_entities' not in theme:
- # 从description中提取业务实体
- theme['biz_entities'] = self._extract_biz_entities_from_description(theme['description'])
- elif isinstance(theme['biz_entities'], str):
- theme['biz_entities'] = [theme['biz_entities']]
-
- # 确保biz_metrics存在且是数组
- if 'biz_metrics' not in theme:
- # 从description中提取业务指标
- theme['biz_metrics'] = self._extract_biz_metrics_from_description(theme['description'])
- elif isinstance(theme['biz_metrics'], str):
- theme['biz_metrics'] = [theme['biz_metrics']]
-
- validated_themes.append(theme)
- else:
- self.logger.warning(f"主题格式不完整,跳过: {theme.get('topic_name', 'Unknown')}")
-
- return validated_themes
-
- except json.JSONDecodeError as e:
- self.logger.error(f"JSON解析失败: {e}")
- self.logger.debug(f"原始响应: {response}")
- raise ValueError(f"无法解析LLM响应为JSON格式: {e}")
- except Exception as e:
- self.logger.error(f"解析主题响应失败: {e}")
- raise
-
- def _extract_biz_entities_from_description(self, description: str) -> List[str]:
- """从描述中提取业务实体(简单实现)"""
- # 定义常见的业务实体关键词
- entity_keywords = [
- "服务区", "档口", "商品", "公司", "分公司", "车辆", "支付方式",
- "订单", "客户", "营收", "路段", "区域", "品牌", "品类"
- ]
-
- # 从描述中查找出现的实体关键词
- found_entities = []
- for entity in entity_keywords:
- if entity in description:
- found_entities.append(entity)
-
- # 如果找到的太少,返回默认值
- if len(found_entities) < 3:
- found_entities = ["业务实体", "数据对象", "分析主体"]
-
- return found_entities[:5] # 最多返回5个
-
- def _extract_biz_metrics_from_description(self, description: str) -> List[str]:
- """从描述中提取业务指标(简单实现)"""
- # 定义常见的业务指标关键词
- metrics_keywords = [
- "收入趋势", "营业额对比", "支付方式分布", "服务区对比", "增长率",
- "占比分析", "排名统计", "效率评估", "流量分析", "转化率"
- ]
-
- # 从描述中查找出现的指标关键词
- found_metrics = []
- for metric in metrics_keywords:
- if any(word in description for word in metric.split()):
- found_metrics.append(metric)
-
- # 如果找到的太少,返回默认值
- if len(found_metrics) < 3:
- found_metrics = ["数据统计", "趋势分析", "对比分析"]
-
- return found_metrics[:5] # 最多返回5个
|