123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740 |
- import asyncio
- import json
- import logging
- import time
- from datetime import datetime
- from pathlib import Path
- from typing import List, Dict, Any, Optional
- from data_pipeline.config import SCHEMA_TOOLS_CONFIG
- from data_pipeline.validators import FileCountValidator
- from data_pipeline.analyzers import MDFileAnalyzer, ThemeExtractor
- from data_pipeline.utils.logger import setup_logging
- from core.vanna_llm_factory import create_vanna_instance
- class QuestionSQLGenerationAgent:
- """Question-SQL生成Agent"""
-
- def __init__(self,
- output_dir: str,
- table_list_file: str,
- business_context: str,
- db_name: str = None):
- """
- 初始化Agent
-
- Args:
- output_dir: 输出目录(包含DDL和MD文件)
- table_list_file: 表清单文件路径
- business_context: 业务上下文
- db_name: 数据库名称(用于输出文件命名)
- """
- self.output_dir = Path(output_dir)
- self.table_list_file = table_list_file
- self.business_context = business_context
- self.db_name = db_name or "db"
-
- self.config = SCHEMA_TOOLS_CONFIG
- self.logger = logging.getLogger("schema_tools.QSAgent")
-
- # 初始化组件
- self.validator = FileCountValidator()
- self.md_analyzer = MDFileAnalyzer(output_dir)
-
- # vanna实例和主题提取器将在需要时初始化
- self.vn = None
- self.theme_extractor = None
-
- # 中间结果存储
- self.intermediate_results = []
- self.intermediate_file = None
-
- async def generate(self) -> Dict[str, Any]:
- """
- 生成Question-SQL对
-
- Returns:
- 生成结果报告
- """
- start_time = time.time()
-
- try:
- self.logger.info("🚀 开始生成Question-SQL训练数据")
-
- # 1. 验证文件数量
- self.logger.info("📋 验证文件数量...")
- validation_result = self.validator.validate(self.table_list_file, str(self.output_dir))
-
- if not validation_result.is_valid:
- self.logger.error(f"❌ 文件验证失败: {validation_result.error}")
- if validation_result.missing_ddl:
- self.logger.error(f"缺失DDL文件: {validation_result.missing_ddl}")
- if validation_result.missing_md:
- self.logger.error(f"缺失MD文件: {validation_result.missing_md}")
- raise ValueError(f"文件验证失败: {validation_result.error}")
-
- self.logger.info(f"✅ 文件验证通过: {validation_result.table_count}个表")
-
- # 2. 读取所有MD文件内容
- self.logger.info("📖 读取MD文件...")
- md_contents = await self.md_analyzer.read_all_md_files()
-
- # 3. 初始化LLM相关组件
- self._initialize_llm_components()
-
- # 4. 提取分析主题
- self.logger.info("🎯 提取分析主题...")
- themes = await self.theme_extractor.extract_themes(md_contents)
- self.logger.info(f"✅ 成功提取 {len(themes)} 个分析主题")
-
- for i, theme in enumerate(themes):
- topic_name = theme.get('topic_name', theme.get('name', ''))
- description = theme.get('description', '')
- self.logger.info(f" {i+1}. {topic_name}: {description}")
-
- # 5. 初始化中间结果文件
- self._init_intermediate_file()
-
- # 6. 处理每个主题
- all_qs_pairs = []
- failed_themes = []
-
- # 根据配置决定是并行还是串行处理
- max_concurrent = self.config['qs_generation'].get('max_concurrent_themes', 1)
- if max_concurrent > 1:
- results = await self._process_themes_parallel(themes, md_contents, max_concurrent)
- else:
- results = await self._process_themes_serial(themes, md_contents)
-
- # 7. 整理结果
- for result in results:
- if result['success']:
- all_qs_pairs.extend(result['qs_pairs'])
- else:
- failed_themes.append(result['theme_name'])
-
- # 8. 保存最终结果
- output_file = await self._save_final_results(all_qs_pairs)
-
- # 8.5 生成metadata.txt文件
- await self._generate_metadata_file(themes)
-
- # 8.6 生成metadata_detail.md文件
- await self._generate_metadata_md_file(themes)
-
- # 8.7 生成db_query_decision_prompt.txt文件
- await self._generate_decision_prompt_file(themes)
-
- # 9. 清理中间文件
- if not failed_themes: # 只有全部成功才清理
- self._cleanup_intermediate_file()
-
- # 10. 生成报告
- end_time = time.time()
- report = {
- 'success': True,
- 'total_themes': len(themes),
- 'successful_themes': len(themes) - len(failed_themes),
- 'failed_themes': failed_themes,
- 'total_questions': len(all_qs_pairs),
- 'output_file': str(output_file),
- 'execution_time': end_time - start_time
- }
-
- self._print_summary(report)
-
- return report
-
- except Exception as e:
- self.logger.exception("❌ Question-SQL生成失败")
-
- # 保存当前已生成的结果
- if self.intermediate_results:
- recovery_file = self._save_intermediate_results()
- self.logger.warning(f"⚠️ 中间结果已保存到: {recovery_file}")
-
- raise
-
- def _initialize_llm_components(self):
- """初始化LLM相关组件"""
- if not self.vn:
- self.logger.info("初始化LLM组件...")
- self.vn = create_vanna_instance()
- self.theme_extractor = ThemeExtractor(self.vn, self.business_context)
-
- async def _process_themes_serial(self, themes: List[Dict], md_contents: str) -> List[Dict]:
- """串行处理主题"""
- results = []
-
- for i, theme in enumerate(themes):
- self.logger.info(f"处理主题 {i+1}/{len(themes)}: {theme.get('topic_name', theme.get('name', ''))}")
- result = await self._process_single_theme(theme, md_contents)
- results.append(result)
-
- # 检查是否需要继续
- if not result['success'] and not self.config['qs_generation']['continue_on_theme_error']:
- self.logger.error(f"主题处理失败,停止处理")
- break
-
- return results
-
- async def _process_themes_parallel(self, themes: List[Dict], md_contents: str, max_concurrent: int) -> List[Dict]:
- """并行处理主题"""
- semaphore = asyncio.Semaphore(max_concurrent)
-
- async def process_with_semaphore(theme):
- async with semaphore:
- return await self._process_single_theme(theme, md_contents)
-
- tasks = [process_with_semaphore(theme) for theme in themes]
- results = await asyncio.gather(*tasks, return_exceptions=True)
-
- # 处理异常结果
- processed_results = []
- for i, result in enumerate(results):
- if isinstance(result, Exception):
- theme_name = themes[i].get('topic_name', themes[i].get('name', ''))
- self.logger.error(f"主题 '{theme_name}' 处理异常: {result}")
- processed_results.append({
- 'success': False,
- 'theme_name': theme_name,
- 'error': str(result)
- })
- else:
- processed_results.append(result)
-
- return processed_results
-
- async def _process_single_theme(self, theme: Dict, md_contents: str) -> Dict:
- """处理单个主题"""
- theme_name = theme.get('topic_name', theme.get('name', ''))
-
- try:
- self.logger.info(f"🔍 开始处理主题: {theme_name}")
-
- # 构建prompt
- prompt = self._build_qs_generation_prompt(theme, md_contents)
-
- # 调用LLM生成
- response = await self._call_llm(prompt)
-
- # 解析响应
- qs_pairs = self._parse_qs_response(response)
-
- # 验证和清理
- validated_pairs = self._validate_qs_pairs(qs_pairs, theme_name)
-
- # 保存中间结果
- await self._save_theme_results(theme_name, validated_pairs)
-
- self.logger.info(f"✅ 主题 '{theme_name}' 处理成功,生成 {len(validated_pairs)} 个问题")
-
- return {
- 'success': True,
- 'theme_name': theme_name,
- 'qs_pairs': validated_pairs
- }
-
- except Exception as e:
- self.logger.error(f"❌ 处理主题 '{theme_name}' 失败: {e}")
- return {
- 'success': False,
- 'theme_name': theme_name,
- 'error': str(e),
- 'qs_pairs': []
- }
-
- def _build_qs_generation_prompt(self, theme: Dict, md_contents: str) -> str:
- """构建Question-SQL生成的prompt"""
- questions_count = self.config['qs_generation']['questions_per_theme']
-
- # 获取主题信息
- topic_name = theme.get('topic_name', theme.get('name', ''))
- description = theme.get('description', '')
- biz_entities = theme.get('biz_entities', [])
- biz_metrics = theme.get('biz_metrics', [])
- related_tables = theme.get('related_tables', [])
-
- prompt = f"""你是一位业务数据分析师,正在为{self.business_context}设计数据查询。
- 当前分析主题:{topic_name}
- 主题描述:{description}
- 业务实体:{', '.join(biz_entities)}
- 业务指标:{', '.join(biz_metrics)}
- 相关表:{', '.join(related_tables)}
- 数据库表结构信息:
- {md_contents}
- 请为这个主题生成 {questions_count} 个业务问题和对应的SQL查询。
- 要求:
- 1. 问题应该从业务角度出发,贴合主题要求,具有实际分析价值
- 2. SQL必须使用PostgreSQL语法
- 3. 考虑实际业务逻辑(如软删除使用 delete_ts IS NULL 条件)
- 4. 使用中文别名提高可读性(使用 AS 指定列别名)
- 5. 问题应该多样化,覆盖不同的分析角度
- 6. 包含时间筛选、分组统计、排序、限制等不同类型的查询
- 7. SQL语句末尾必须以分号结束
- 8. **重要:问题和SQL都必须是单行文本,不能包含换行符**
- 输出JSON格式(注意SQL中的双引号需要转义):
- ```json
- [
- {{
- "question": "具体的业务问题?",
- "sql": "SELECT column AS 中文名 FROM table WHERE condition;"
- }}
- ]
- ```
- 生成的问题应该包括但不限于:
- - 趋势分析(按时间维度)
- - 对比分析(不同维度对比)
- - 排名统计(TOP N)
- - 汇总统计(总量、平均值等)
- - 明细查询(特定条件的详细数据)"""
-
- return prompt
-
- async def _call_llm(self, prompt: str) -> str:
- """调用LLM"""
- try:
- response = await asyncio.to_thread(
- self.vn.chat_with_llm,
- question=prompt,
- system_prompt="你是一个专业的数据分析师,精通PostgreSQL语法,擅长设计有业务价值的数据查询。请严格按照JSON格式输出。特别注意:生成的问题和SQL都必须是单行文本,不能包含换行符。"
- )
-
- if not response or not response.strip():
- raise ValueError("LLM返回空响应")
-
- return response.strip()
-
- except Exception as e:
- self.logger.error(f"LLM调用失败: {e}")
- raise
-
- def _parse_qs_response(self, response: str) -> List[Dict[str, str]]:
- """解析Question-SQL响应"""
- try:
- # 提取JSON部分
- import re
- json_match = re.search(r'```json\s*(.*?)\s*```', response, re.DOTALL)
- if json_match:
- json_str = json_match.group(1)
- else:
- json_str = response
-
- # 解析JSON
- qs_pairs = json.loads(json_str)
-
- if not isinstance(qs_pairs, list):
- raise ValueError("响应不是列表格式")
-
- return qs_pairs
-
- except json.JSONDecodeError as e:
- self.logger.error(f"JSON解析失败: {e}")
- self.logger.debug(f"原始响应: {response}")
- raise ValueError(f"无法解析LLM响应为JSON格式: {e}")
-
- def _validate_qs_pairs(self, qs_pairs: List[Dict], theme_name: str) -> List[Dict[str, str]]:
- """验证和清理Question-SQL对"""
- validated = []
-
- for i, pair in enumerate(qs_pairs):
- if not isinstance(pair, dict):
- self.logger.warning(f"跳过无效格式的项 {i+1}")
- continue
-
- question = pair.get('question', '').strip()
- sql = pair.get('sql', '').strip()
-
- if not question or not sql:
- self.logger.warning(f"跳过空问题或SQL的项 {i+1}")
- continue
-
- # 清理question中的换行符,替换为空格
- question = ' '.join(question.split())
-
- # 清理SQL中的换行符和多余空格,压缩为单行
- sql = ' '.join(sql.split())
-
- # 确保SQL以分号结束
- if not sql.endswith(';'):
- sql += ';'
-
- validated.append({
- 'question': question,
- 'sql': sql
- })
-
- self.logger.info(f"主题 '{theme_name}': 验证通过 {len(validated)}/{len(qs_pairs)} 个问题")
-
- return validated
-
- def _init_intermediate_file(self):
- """初始化中间结果文件"""
- timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
- self.intermediate_file = self.output_dir / f"qs_intermediate_{timestamp}.json"
- self.intermediate_results = []
- self.logger.info(f"中间结果文件: {self.intermediate_file}")
-
- async def _save_theme_results(self, theme_name: str, qs_pairs: List[Dict]):
- """保存单个主题的结果"""
- theme_result = {
- "theme": theme_name,
- "timestamp": datetime.now().isoformat(),
- "questions_count": len(qs_pairs),
- "questions": qs_pairs
- }
-
- self.intermediate_results.append(theme_result)
-
- # 立即保存到中间文件
- if self.config['qs_generation']['save_intermediate']:
- try:
- with open(self.intermediate_file, 'w', encoding='utf-8') as f:
- json.dump(self.intermediate_results, f, ensure_ascii=False, indent=2)
- self.logger.debug(f"中间结果已更新: {self.intermediate_file}")
- except Exception as e:
- self.logger.warning(f"保存中间结果失败: {e}")
-
- def _save_intermediate_results(self) -> Path:
- """异常时保存中间结果"""
- if not self.intermediate_results:
- return None
-
- recovery_file = self.output_dir / f"qs_recovery_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
-
- try:
- with open(recovery_file, 'w', encoding='utf-8') as f:
- json.dump({
- "status": "interrupted",
- "timestamp": datetime.now().isoformat(),
- "completed_themes": len(self.intermediate_results),
- "results": self.intermediate_results
- }, f, ensure_ascii=False, indent=2)
-
- return recovery_file
-
- except Exception as e:
- self.logger.error(f"保存恢复文件失败: {e}")
- return None
-
- async def _save_final_results(self, all_qs_pairs: List[Dict]) -> Path:
- """保存最终结果"""
- timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
- output_file = self.output_dir / f"{self.config['qs_generation']['output_file_prefix']}_{self.db_name}_{timestamp}_pair.json"
-
- try:
- with open(output_file, 'w', encoding='utf-8') as f:
- json.dump(all_qs_pairs, f, ensure_ascii=False, indent=2)
-
- self.logger.info(f"✅ 最终结果已保存到: {output_file}")
- return output_file
-
- except Exception as e:
- self.logger.error(f"保存最终结果失败: {e}")
- raise
-
- def _cleanup_intermediate_file(self):
- """清理中间文件"""
- if self.intermediate_file and self.intermediate_file.exists():
- try:
- self.intermediate_file.unlink()
- self.logger.info("已清理中间文件")
- except Exception as e:
- self.logger.warning(f"清理中间文件失败: {e}")
-
- def _print_summary(self, report: Dict):
- """打印总结信息"""
- self.logger.info("=" * 60)
- self.logger.info("📊 生成总结")
- self.logger.info(f" ✅ 总主题数: {report['total_themes']}")
- self.logger.info(f" ✅ 成功主题: {report['successful_themes']}")
-
- if report['failed_themes']:
- self.logger.info(f" ❌ 失败主题: {len(report['failed_themes'])}")
- for theme in report['failed_themes']:
- self.logger.info(f" - {theme}")
-
- self.logger.info(f" 📝 总问题数: {report['total_questions']}")
- self.logger.info(f" 📁 输出文件: {report['output_file']}")
- self.logger.info(f" ⏱️ 执行时间: {report['execution_time']:.2f}秒")
- self.logger.info("=" * 60)
- async def _generate_metadata_file(self, themes: List[Dict]):
- """生成metadata.txt文件,包含INSERT语句"""
- metadata_file = self.output_dir / "metadata.txt"
-
- try:
- with open(metadata_file, 'w', encoding='utf-8') as f:
- f.write("-- Schema Tools生成的主题元数据\n")
- f.write(f"-- 业务背景: {self.business_context}\n")
- f.write(f"-- 生成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
- f.write(f"-- 数据库: {self.db_name}\n\n")
-
- f.write("-- 创建表(如果不存在)\n")
- f.write("CREATE TABLE IF NOT EXISTS metadata (\n")
- f.write(" id SERIAL PRIMARY KEY, -- 主键\n")
- f.write(" topic_name VARCHAR(100) NOT NULL, -- 业务主题名称\n")
- f.write(" description TEXT, -- 业务主体说明\n")
- f.write(" related_tables TEXT[],\t\t\t -- 相关表名\n")
- f.write(" biz_entities TEXT[], -- 主要业务实体名称\n")
- f.write(" biz_metrics TEXT[], -- 主要业务指标名称\n")
- f.write(" created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP -- 插入时间\n")
- f.write(");\n\n")
-
- f.write("-- 插入主题数据\n")
- for theme in themes:
- # 获取字段值,使用新格式
- topic_name = theme.get('topic_name', theme.get('name', ''))
- description = theme.get('description', '')
-
- # 处理related_tables
- related_tables = theme.get('related_tables', [])
- if isinstance(related_tables, list):
- tables_str = ','.join(related_tables)
- else:
- tables_str = ''
-
- # 处理biz_entities
- biz_entities = theme.get('biz_entities', [])
- if isinstance(biz_entities, list):
- entities_str = ','.join(biz_entities)
- else:
- entities_str = ''
-
- # 处理biz_metrics
- biz_metrics = theme.get('biz_metrics', [])
- if isinstance(biz_metrics, list):
- metrics_str = ','.join(biz_metrics)
- else:
- metrics_str = ''
-
- # 生成INSERT语句
- f.write("INSERT INTO metadata(topic_name, description, related_tables, biz_entities, biz_metrics) VALUES\n")
- f.write("(\n")
- f.write(f" '{self._escape_sql_string(topic_name)}',\n")
- f.write(f" '{self._escape_sql_string(description)}',\n")
- f.write(f" '{tables_str}',\n")
- f.write(f" '{entities_str}',\n")
- f.write(f" '{metrics_str}'\n")
- f.write(");\n\n")
-
- self.logger.info(f"✅ metadata.txt文件已生成: {metadata_file}")
- return metadata_file
-
- except Exception as e:
- self.logger.error(f"生成metadata.txt文件失败: {e}")
- return None
-
- async def _generate_metadata_md_file(self, themes: List[Dict]):
- """生成metadata_detail.md文件"""
- metadata_md_file = self.output_dir / "metadata_detail.md"
-
- try:
- # 从themes中收集示例数据
- sample_tables = set()
- sample_entities = set()
- sample_metrics = set()
-
- for theme in themes:
- related_tables = theme.get('related_tables', [])
- if isinstance(related_tables, list):
- sample_tables.update(related_tables[:2]) # 取前2个表作为示例
-
- biz_entities = theme.get('biz_entities', [])
- if isinstance(biz_entities, list):
- sample_entities.update(biz_entities[:3]) # 取前3个实体作为示例
-
- biz_metrics = theme.get('biz_metrics', [])
- if isinstance(biz_metrics, list):
- sample_metrics.update(biz_metrics[:3]) # 取前3个指标作为示例
-
- # 转换为字符串格式,避免硬编码特定行业内容
- tables_example = ', '.join(list(sample_tables)[:2]) if sample_tables else '数据表1, 数据表2'
- entities_example = ', '.join(list(sample_entities)[:3]) if sample_entities else '业务实体1, 业务实体2, 业务实体3'
- metrics_example = ', '.join(list(sample_metrics)[:3]) if sample_metrics else '业务指标1, 业务指标2, 业务指标3'
-
- with open(metadata_md_file, 'w', encoding='utf-8') as f:
- f.write("## metadata(存储分析主题元数据)\n\n")
- f.write("`metadata` 主要描述了当前数据库包含了哪些数据内容,哪些分析主题,哪些指标等等。\n\n")
- f.write("字段列表:\n\n")
- f.write("- `id` (serial) - 主键ID [主键, 非空]\n")
- f.write("- `topic_name` (varchar(100)) - 业务主题名称 [非空]\n")
- f.write("- `description` (text) - 业务主题说明\n")
- f.write(f"- `related_tables` (text[]) - 涉及的数据表 [示例: {tables_example}]\n")
- f.write(f"- `biz_entities` (text[]) - 主要业务实体名称 [示例: {entities_example}]\n")
- f.write(f"- `biz_metrics` (text[]) - 主要业务指标名称 [示例: {metrics_example}]\n")
- f.write("- `created_at` (timestamp) - 插入时间 [默认值: `CURRENT_TIMESTAMP`]\n\n")
- f.write("字段补充说明:\n\n")
- f.write("- `id` 为主键,自增;\n")
- f.write("- `related_tables` 用于建立主题与具体明细表的依赖关系;\n")
- f.write("- `biz_entities` 表示主题关注的核心对象,例如服务区、车辆、公司;\n")
- f.write("- `biz_metrics` 表示该主题关注的业务分析指标,例如营收对比、趋势变化、占比结构等。\n")
-
- self.logger.info(f"✅ metadata_detail.md文件已生成: {metadata_md_file}")
- return metadata_md_file
-
- except Exception as e:
- self.logger.error(f"生成metadata_detail.md文件失败: {e}")
- return None
-
- async def _generate_decision_prompt_with_llm(self, themes: List[Dict], md_contents: str) -> str:
- """使用LLM动态生成db_query_decision_prompt.txt的完整内容(基于纯表结构分析)"""
- try:
- # 构建LLM提示词 - 让LLM完全独立分析表结构
- prompt = f"""你是一位资深的数据分析师,请直接分析以下数据库的表结构,独立判断业务范围和数据范围。
- 业务背景:{self.business_context}
- 数据库表结构详细信息:
- {md_contents}
- 分析任务:
- 请你直接从表结构、字段名称、字段类型、示例数据中推断业务逻辑,不要参考任何预设的业务主题。
- 分析要求:
- 1. **业务范围**:根据表名和核心业务字段,用一句话概括这个数据库支撑的业务领域
- 2. **数据范围**:根据具体的数据字段(如金额、数量、类型等),用一句话概括涉及的数据类型和范围
- 3. **核心业务实体**:从非技术字段中识别主要的业务对象(如表中的维度字段)
- 4. **关键业务指标**:从数值型字段和枚举字段中识别可以进行分析的指标
- 技术字段过滤规则(请忽略以下字段):
- - 主键字段:id、主键ID等
- - 时间戳字段:create_ts、update_ts、delete_ts、created_at、updated_at等
- - 版本字段:version、版本号等
- - 操作人字段:created_by、updated_by、deleted_by等
- 请直接生成以下格式的业务分析报告(请严格按照格式,不要添加额外内容):
- === 数据库业务范围 ===
- 当前数据库存储的是[业务描述]的相关数据,主要涉及[数据范围],包含以下业务数据:
- 核心业务实体:
- - 实体类型1:详细描述(基于实际字段和业务场景),主要字段:字段1、字段2、字段3
- - 实体类型2:详细描述,主要字段:字段1、字段2、字段3
- 关键业务指标:
- - 指标类型1:详细描述(基于实际数值字段和分析需求)
- - 指标类型2:详细描述
- 要求:
- 1. 请完全基于表结构进行独立分析,从字段的业务含义出发,准确反映数据库的实际业务范围
- 2. 严格按照上述格式输出,不要添加分析依据、总结或其他额外内容
- 3. 输出内容到"指标类型2:详细描述"结束即可"""
-
- # 调用LLM生成内容
- response = await self._call_llm(prompt)
- return response.strip()
-
- except Exception as e:
- self.logger.error(f"LLM生成决策提示内容失败: {e}")
- # 回退方案:生成基础内容
- return self._generate_fallback_decision_content(themes)
-
- async def _generate_fallback_decision_content(self, themes: List[Dict]) -> str:
- """生成回退的决策提示内容(尝试用简化LLM调用)"""
- content = f"=== 数据库业务范围 ===\n"
-
- # 尝试用简化的LLM调用获取数据范围
- try:
- # 构建简化的提示词
- entities_sample = []
- metrics_sample = []
-
- for theme in themes[:3]: # 只取前3个主题作为示例
- biz_entities = theme.get('biz_entities', [])
- if isinstance(biz_entities, list):
- entities_sample.extend(biz_entities[:2])
-
- biz_metrics = theme.get('biz_metrics', [])
- if isinstance(biz_metrics, list):
- metrics_sample.extend(biz_metrics[:2])
-
- # 简化的提示词
- simple_prompt = f"""基于以下信息,用一句话概括{self.business_context}涉及的数据范围:
- 业务实体示例:{', '.join(entities_sample[:5])}
- 业务指标示例:{', '.join(metrics_sample[:5])}
- 请只回答数据范围,格式如:某某数据、某某信息、某某统计等"""
- data_range = await self._call_llm(simple_prompt)
- data_range = data_range.strip()
-
- # 如果LLM返回内容合理,则使用
- if data_range and len(data_range) < 100:
- content += f"当前数据库存储的是{self.business_context}的相关数据,主要涉及{data_range},包含以下业务数据:\n"
- else:
- raise Exception("LLM返回内容不合理")
-
- except Exception as e:
- self.logger.warning(f"简化LLM调用也失败,使用完全兜底方案: {e}")
- # 真正的最后兜底
- content += f"当前数据库存储的是{self.business_context}的相关数据,主要涉及相关业务数据,包含以下业务数据:\n"
-
- content += "核心业务实体:\n"
-
- # 收集所有实体
- all_entities = set()
- for theme in themes:
- biz_entities = theme.get('biz_entities', [])
- if isinstance(biz_entities, list):
- all_entities.update(biz_entities)
-
- for entity in list(all_entities)[:8]:
- content += f"- {entity}:{entity}相关的业务信息\n"
-
- content += "关键业务指标:\n"
-
- # 收集所有指标
- all_metrics = set()
- for theme in themes:
- biz_metrics = theme.get('biz_metrics', [])
- if isinstance(biz_metrics, list):
- all_metrics.update(biz_metrics)
-
- for metric in list(all_metrics)[:8]:
- content += f"- {metric}:{metric}相关的分析指标\n"
-
- return content
- async def _generate_decision_prompt_file(self, themes: List[Dict]):
- """生成db_query_decision_prompt.txt文件"""
- decision_prompt_file = self.output_dir / "db_query_decision_prompt.txt"
-
- try:
- # 读取MD内容作为LLM输入
- md_contents = await self.md_analyzer.read_all_md_files()
-
- # 使用LLM动态生成决策提示内容
- decision_content = await self._generate_decision_prompt_with_llm(themes, md_contents)
-
- # 写入文件
- with open(decision_prompt_file, 'w', encoding='utf-8') as f:
- f.write(decision_content)
-
- self.logger.info(f"✅ db_query_decision_prompt.txt文件已生成: {decision_prompt_file}")
- return decision_prompt_file
-
- except Exception as e:
- self.logger.error(f"生成db_query_decision_prompt.txt文件失败: {e}")
- # 如果LLM调用失败,使用回退方案
- try:
- fallback_content = await self._generate_fallback_decision_content(themes)
- with open(decision_prompt_file, 'w', encoding='utf-8') as f:
- f.write(fallback_content)
- self.logger.warning(f"⚠️ 使用回退方案生成了 {decision_prompt_file}")
- return decision_prompt_file
- except Exception as fallback_error:
- self.logger.error(f"回退方案也失败: {fallback_error}")
- return None
-
- def _escape_sql_string(self, value: str) -> str:
- """转义SQL字符串中的特殊字符"""
- if not value:
- return ""
- # 转义单引号
- return value.replace("'", "''")
|