agent.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. """
  2. 基于 StateGraph 的、具备上下文感知能力的 React Agent 核心实现
  3. """
  4. import logging
  5. import json
  6. import pandas as pd
  7. from typing import List, Optional, Dict, Any, Tuple
  8. from contextlib import AsyncExitStack
  9. from langchain_openai import ChatOpenAI
  10. from langchain_core.messages import HumanMessage, ToolMessage, BaseMessage, SystemMessage, AIMessage
  11. from langgraph.graph import StateGraph, END
  12. from langgraph.prebuilt import ToolNode
  13. from redis.asyncio import Redis
  14. try:
  15. from langgraph.checkpoint.redis import AsyncRedisSaver
  16. except ImportError:
  17. AsyncRedisSaver = None
  18. # 从新模块导入配置、状态和工具
  19. from . import config
  20. from .state import AgentState
  21. from .sql_tools import sql_tools
  22. from langchain_core.runnables import RunnablePassthrough
  23. logger = logging.getLogger(__name__)
  24. class CustomReactAgent:
  25. """
  26. 一个使用 StateGraph 构建的、具备上下文感知和持久化能力的 Agent。
  27. """
  28. def __init__(self):
  29. """私有构造函数,请使用 create() 类方法来创建实例。"""
  30. self.llm = None
  31. self.tools = None
  32. self.agent_executor = None
  33. self.checkpointer = None
  34. self._exit_stack = None
  35. @classmethod
  36. async def create(cls):
  37. """异步工厂方法,创建并初始化 CustomReactAgent 实例。"""
  38. instance = cls()
  39. await instance._async_init()
  40. return instance
  41. async def _async_init(self):
  42. """异步初始化所有组件。"""
  43. logger.info("🚀 开始初始化 CustomReactAgent...")
  44. # 1. 初始化 LLM
  45. self.llm = ChatOpenAI(
  46. api_key=config.QWEN_API_KEY,
  47. base_url=config.QWEN_BASE_URL,
  48. model=config.QWEN_MODEL,
  49. temperature=0.1,
  50. model_kwargs={
  51. "extra_body": {
  52. "enable_thinking": False,
  53. "misc": {
  54. "ensure_ascii": False
  55. }
  56. }
  57. }
  58. )
  59. logger.info(f" LLM 已初始化,模型: {config.QWEN_MODEL}")
  60. # 2. 绑定工具
  61. self.tools = sql_tools
  62. self.llm_with_tools = self.llm.bind_tools(self.tools)
  63. logger.info(f" 已绑定 {len(self.tools)} 个工具。")
  64. # 3. 初始化 Redis Checkpointer
  65. if config.REDIS_ENABLED and AsyncRedisSaver is not None:
  66. try:
  67. self._exit_stack = AsyncExitStack()
  68. checkpointer_manager = AsyncRedisSaver.from_conn_string(config.REDIS_URL)
  69. self.checkpointer = await self._exit_stack.enter_async_context(checkpointer_manager)
  70. await self.checkpointer.asetup()
  71. logger.info(f" AsyncRedisSaver 持久化已启用: {config.REDIS_URL}")
  72. except Exception as e:
  73. logger.error(f" ❌ RedisSaver 初始化失败: {e}", exc_info=True)
  74. if self._exit_stack:
  75. await self._exit_stack.aclose()
  76. self.checkpointer = None
  77. else:
  78. logger.warning(" Redis 持久化功能已禁用。")
  79. # 4. 构建 StateGraph
  80. self.agent_executor = self._create_graph()
  81. logger.info(" StateGraph 已构建并编译。")
  82. logger.info("✅ CustomReactAgent 初始化完成。")
  83. async def close(self):
  84. """清理资源,关闭 Redis 连接。"""
  85. if self._exit_stack:
  86. await self._exit_stack.aclose()
  87. self._exit_stack = None
  88. self.checkpointer = None
  89. logger.info("✅ RedisSaver 资源已通过 AsyncExitStack 释放。")
  90. def _create_graph(self):
  91. """定义并编译最终的、正确的 StateGraph 结构。"""
  92. builder = StateGraph(AgentState)
  93. # 定义所有需要的节点
  94. builder.add_node("agent", self._agent_node)
  95. builder.add_node("prepare_tool_input", self._prepare_tool_input_node)
  96. builder.add_node("tools", ToolNode(self.tools))
  97. builder.add_node("update_state_after_tool", self._update_state_after_tool_node)
  98. builder.add_node("format_final_response", self._format_final_response_node)
  99. # 建立正确的边连接
  100. builder.set_entry_point("agent")
  101. builder.add_conditional_edges(
  102. "agent",
  103. self._should_continue,
  104. {
  105. "continue": "prepare_tool_input",
  106. "end": "format_final_response"
  107. }
  108. )
  109. builder.add_edge("prepare_tool_input", "tools")
  110. builder.add_edge("tools", "update_state_after_tool")
  111. builder.add_edge("update_state_after_tool", "agent")
  112. builder.add_edge("format_final_response", END)
  113. return builder.compile(checkpointer=self.checkpointer)
  114. def _should_continue(self, state: AgentState) -> str:
  115. """判断是继续调用工具还是结束。"""
  116. last_message = state["messages"][-1]
  117. if hasattr(last_message, "tool_calls") and last_message.tool_calls:
  118. return "continue"
  119. return "end"
  120. def _agent_node(self, state: AgentState) -> Dict[str, Any]:
  121. """Agent 节点:只负责调用 LLM 并返回其输出。"""
  122. logger.info(f"🧠 [Node] agent - Thread: {state['thread_id']}")
  123. messages_for_llm = list(state["messages"])
  124. if state.get("suggested_next_step"):
  125. instruction = f"提示:建议下一步使用工具 '{state['suggested_next_step']}'。"
  126. messages_for_llm.append(SystemMessage(content=instruction))
  127. response = self.llm_with_tools.invoke(messages_for_llm)
  128. logger.info(f" LLM Response: {response.pretty_print()}")
  129. # 只返回消息,不承担其他职责
  130. return {"messages": [response]}
  131. def _print_state_info(self, state: AgentState, node_name: str) -> None:
  132. """
  133. 打印 state 的全部信息,用于调试
  134. """
  135. logger.info(" ~" * 10 + " State Print Start" + "~" * 10)
  136. logger.info(f"📋 [State Debug] {node_name} - 当前状态信息:")
  137. # 🎯 打印 state 中的所有字段
  138. logger.info(" State中的所有字段:")
  139. for key, value in state.items():
  140. if key == "messages":
  141. logger.info(f" {key}: {len(value)} 条消息")
  142. else:
  143. logger.info(f" {key}: {value}")
  144. # 原有的详细消息信息
  145. logger.info(f" 用户ID: {state.get('user_id', 'N/A')}")
  146. logger.info(f" 线程ID: {state.get('thread_id', 'N/A')}")
  147. logger.info(f" 建议下一步: {state.get('suggested_next_step', 'N/A')}")
  148. messages = state.get("messages", [])
  149. logger.info(f" 消息历史数量: {len(messages)}")
  150. if messages:
  151. logger.info(" 最近的消息:")
  152. for i, msg in enumerate(messages[-10:], start=max(0, len(messages)-10)): # 显示最后3条消息
  153. msg_type = type(msg).__name__
  154. content_preview = str(msg.content)[:100] + "..." if len(str(msg.content)) > 100 else str(msg.content)
  155. logger.info(f" [{i}] {msg_type}: {content_preview}")
  156. # 如果是 AIMessage 且有工具调用,显示工具调用信息
  157. if hasattr(msg, 'tool_calls') and msg.tool_calls:
  158. for tool_call in msg.tool_calls:
  159. tool_name = tool_call.get('name', 'Unknown')
  160. tool_args = tool_call.get('args', {})
  161. logger.info(f" 工具调用: {tool_name}")
  162. logger.info(f" 参数: {str(tool_args)[:200]}...")
  163. logger.info(" ~" * 10 + " State Print End" + "~" * 10)
  164. def _prepare_tool_input_node(self, state: AgentState) -> Dict[str, Any]:
  165. """
  166. 信息组装节点:为需要上下文的工具注入历史消息。
  167. """
  168. logger.info(f"🛠️ [Node] prepare_tool_input - Thread: {state['thread_id']}")
  169. # 🎯 打印 state 全部信息
  170. # self._print_state_info(state, "prepare_tool_input")
  171. last_message = state["messages"][-1]
  172. if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
  173. return {"messages": [last_message]}
  174. # 创建一个新的 AIMessage 来替换,避免直接修改 state 中的对象
  175. new_tool_calls = []
  176. for tool_call in last_message.tool_calls:
  177. if tool_call["name"] == "generate_sql":
  178. logger.info(" 检测到 generate_sql 调用,注入历史消息。")
  179. # 复制一份以避免修改原始 tool_call
  180. modified_args = tool_call["args"].copy()
  181. # 🎯 改进的消息过滤逻辑:只保留有用的对话上下文
  182. clean_history = []
  183. for msg in state["messages"]:
  184. if isinstance(msg, HumanMessage):
  185. # 保留所有用户消息
  186. clean_history.append({
  187. "type": "human",
  188. "content": msg.content
  189. })
  190. elif isinstance(msg, AIMessage):
  191. # 只保留最终的、面向用户的回答(包含"[Formatted Output]"的消息)
  192. if msg.content and "[Formatted Output]" in msg.content:
  193. # 去掉 "[Formatted Output]" 标记,只保留真正的回答
  194. clean_content = msg.content.replace("[Formatted Output]\n", "")
  195. clean_history.append({
  196. "type": "ai",
  197. "content": clean_content
  198. })
  199. # 跳过包含工具调用的 AIMessage(中间步骤)
  200. # 跳过所有 ToolMessage(工具执行结果)
  201. modified_args["history_messages"] = clean_history
  202. logger.info(f" 注入了 {len(clean_history)} 条过滤后的历史消息")
  203. new_tool_calls.append({
  204. "name": tool_call["name"],
  205. "args": modified_args,
  206. "id": tool_call["id"],
  207. })
  208. else:
  209. new_tool_calls.append(tool_call)
  210. # 用包含修改后参数的新消息替换掉原来的
  211. last_message.tool_calls = new_tool_calls
  212. return {"messages": [last_message]}
  213. def _update_state_after_tool_node(self, state: AgentState) -> Dict[str, Any]:
  214. """在工具执行后,更新 suggested_next_step 并清理参数。"""
  215. logger.info(f"📝 [Node] update_state_after_tool - Thread: {state['thread_id']}")
  216. # 🎯 打印 state 全部信息
  217. self._print_state_info(state, "update_state_after_tool")
  218. last_tool_message = state['messages'][-1]
  219. tool_name = last_tool_message.name
  220. tool_output = last_tool_message.content
  221. next_step = None
  222. if tool_name == 'generate_sql':
  223. if "失败" in tool_output or "无法生成" in tool_output:
  224. next_step = 'answer_with_common_sense'
  225. else:
  226. next_step = 'valid_sql'
  227. # 🎯 清理 generate_sql 的 history_messages 参数,设置为空字符串
  228. # self._clear_history_messages_parameter(state['messages'])
  229. elif tool_name == 'valid_sql':
  230. if "失败" in tool_output:
  231. next_step = 'analyze_validation_error'
  232. else:
  233. next_step = 'run_sql'
  234. elif tool_name == 'run_sql':
  235. next_step = 'summarize_final_answer'
  236. logger.info(f" Tool '{tool_name}' executed. Suggested next step: {next_step}")
  237. return {"suggested_next_step": next_step}
  238. def _clear_history_messages_parameter(self, messages: List[BaseMessage]) -> None:
  239. """
  240. 将 generate_sql 工具的 history_messages 参数设置为空字符串
  241. """
  242. for message in messages:
  243. if hasattr(message, "tool_calls") and message.tool_calls:
  244. for tool_call in message.tool_calls:
  245. if tool_call["name"] == "generate_sql" and "history_messages" in tool_call["args"]:
  246. tool_call["args"]["history_messages"] = ""
  247. logger.info(f" 已将 generate_sql 的 history_messages 设置为空字符串")
  248. def _format_final_response_node(self, state: AgentState) -> Dict[str, Any]:
  249. """最终输出格式化节点。"""
  250. logger.info(f"🎨 [Node] format_final_response - Thread: {state['thread_id']}")
  251. last_message = state['messages'][-1]
  252. last_message.content = f"[Formatted Output]\n{last_message.content}"
  253. return {"messages": [last_message]}
  254. def _extract_latest_sql_data(self, messages: List[BaseMessage]) -> Optional[str]:
  255. """从消息历史中提取最近的run_sql执行结果,但仅限于当前对话轮次。"""
  256. logger.info("🔍 提取最新的SQL执行结果...")
  257. # 🎯 只查找最后一个HumanMessage之后的SQL执行结果
  258. last_human_index = -1
  259. for i in range(len(messages) - 1, -1, -1):
  260. if isinstance(messages[i], HumanMessage):
  261. last_human_index = i
  262. break
  263. if last_human_index == -1:
  264. logger.info(" 未找到用户消息,跳过SQL数据提取")
  265. return None
  266. # 只在当前对话轮次中查找SQL结果
  267. current_conversation = messages[last_human_index:]
  268. logger.info(f" 当前对话轮次包含 {len(current_conversation)} 条消息")
  269. for msg in reversed(current_conversation):
  270. if isinstance(msg, ToolMessage) and msg.name == 'run_sql':
  271. logger.info(f" 找到当前对话轮次的run_sql结果: {msg.content[:100]}...")
  272. # 🎯 处理Unicode转义序列,将其转换为正常的中文字符
  273. try:
  274. # 先尝试解析JSON以验证格式
  275. parsed_data = json.loads(msg.content)
  276. # 重新序列化,确保中文字符正常显示
  277. formatted_content = json.dumps(parsed_data, ensure_ascii=False, separators=(',', ':'))
  278. logger.info(f" 已转换Unicode转义序列为中文字符")
  279. return formatted_content
  280. except json.JSONDecodeError:
  281. # 如果不是有效JSON,直接返回原内容
  282. logger.warning(f" SQL结果不是有效JSON格式,返回原始内容")
  283. return msg.content
  284. logger.info(" 当前对话轮次中未找到run_sql执行结果")
  285. return None
  286. async def chat(self, message: str, user_id: str, thread_id: Optional[str] = None) -> Dict[str, Any]:
  287. """
  288. 处理用户聊天请求。
  289. """
  290. if not thread_id:
  291. now = pd.Timestamp.now()
  292. milliseconds = int(now.microsecond / 1000)
  293. thread_id = f"{user_id}:{now.strftime('%Y%m%d%H%M%S')}{milliseconds:03d}"
  294. logger.info(f"🆕 新建会话,Thread ID: {thread_id}")
  295. config = {
  296. "configurable": {
  297. "thread_id": thread_id,
  298. }
  299. }
  300. inputs = {
  301. "messages": [HumanMessage(content=message)],
  302. "user_id": user_id,
  303. "thread_id": thread_id,
  304. "suggested_next_step": None,
  305. }
  306. try:
  307. final_state = await self.agent_executor.ainvoke(inputs, config)
  308. answer = final_state["messages"][-1].content
  309. # 🎯 提取最近的 run_sql 执行结果(不修改messages)
  310. sql_data = self._extract_latest_sql_data(final_state["messages"])
  311. logger.info(f"✅ 处理完成 - Final Answer: '{answer}'")
  312. # 构建返回结果
  313. result = {
  314. "success": True,
  315. "answer": answer,
  316. "thread_id": thread_id
  317. }
  318. # 只有当存在SQL数据时才添加到返回结果中
  319. if sql_data:
  320. result["sql_data"] = sql_data
  321. logger.info(" 📊 已包含SQL原始数据")
  322. return result
  323. except Exception as e:
  324. logger.error(f"❌ 处理过程中发生严重错误 - Thread: {thread_id}: {e}", exc_info=True)
  325. return {"success": False, "error": str(e), "thread_id": thread_id}
  326. async def get_conversation_history(self, thread_id: str) -> List[Dict[str, Any]]:
  327. """从 checkpointer 获取指定线程的对话历史。"""
  328. if not self.checkpointer:
  329. return []
  330. config = {"configurable": {"thread_id": thread_id}}
  331. conversation_state = await self.checkpointer.get(config)
  332. if not conversation_state:
  333. return []
  334. history = []
  335. for msg in conversation_state['values'].get('messages', []):
  336. if isinstance(msg, HumanMessage):
  337. role = "human"
  338. elif isinstance(msg, ToolMessage):
  339. role = "tool"
  340. else: # AIMessage
  341. role = "ai"
  342. history.append({
  343. "type": role,
  344. "content": msg.content,
  345. "tool_calls": getattr(msg, 'tool_calls', None)
  346. })
  347. return history