sql_tools.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. """
  2. 数据库查询相关的工具集
  3. """
  4. import re
  5. import json
  6. import logging
  7. from langchain_core.tools import tool
  8. from pydantic.v1 import BaseModel, Field
  9. from typing import List, Dict, Any
  10. import pandas as pd
  11. logger = logging.getLogger(__name__)
  12. # --- Pydantic Schema for Tool Arguments ---
  13. class GenerateSqlArgs(BaseModel):
  14. """Input schema for the generate_sql tool."""
  15. question: str = Field(description="The user's question to be converted to SQL.")
  16. history_messages: List[Dict[str, Any]] = Field(
  17. default=[],
  18. description="The conversation history messages for context."
  19. )
  20. # --- Tool Functions ---
  21. @tool(args_schema=GenerateSqlArgs)
  22. def generate_sql(question: str, history_messages: List[Dict[str, Any]] = None) -> str:
  23. """
  24. Generates an SQL query based on the user's question and the conversation history.
  25. """
  26. logger.info(f"🔧 [Tool] generate_sql - Question: '{question}'")
  27. if history_messages is None:
  28. history_messages = []
  29. logger.info(f" History contains {len(history_messages)} messages.")
  30. # Combine history and the current question to form a rich prompt
  31. history_str = "\n".join([f"{msg['type']}: {msg.get('content', '') or ''}" for msg in history_messages])
  32. enriched_question = f"""\nBased on the following conversation history:
  33. ---
  34. {history_str}
  35. ---
  36. Please provide an SQL query that answers this specific question: {question}"""
  37. try:
  38. from common.vanna_instance import get_vanna_instance
  39. vn = get_vanna_instance()
  40. sql = vn.generate_sql(enriched_question)
  41. if not sql or sql.strip() == "":
  42. if hasattr(vn, 'last_llm_explanation') and vn.last_llm_explanation:
  43. error_info = vn.last_llm_explanation
  44. logger.warning(f" Vanna returned an explanation instead of SQL: {error_info}")
  45. return f"Database query failed. Reason: {error_info}"
  46. else:
  47. logger.warning(" Vanna failed to generate SQL and provided no explanation.")
  48. return "Could not generate SQL: The question may not be suitable for a database query."
  49. sql_upper = sql.upper().strip()
  50. if not any(keyword in sql_upper for keyword in ['SELECT', 'WITH']):
  51. logger.warning(f" Vanna returned a message that does not appear to be a valid SQL query: {sql}")
  52. return f"Database query failed. Reason: {sql}"
  53. logger.info(f" ✅ SQL Generated Successfully: {sql}")
  54. return sql
  55. except Exception as e:
  56. logger.error(f" An exception occurred during SQL generation: {e}", exc_info=True)
  57. return f"SQL generation failed: {str(e)}"
  58. @tool
  59. def valid_sql(sql: str) -> str:
  60. """
  61. 验证SQL语句的正确性和安全性。
  62. Args:
  63. sql: 待验证的SQL语句。
  64. Returns:
  65. 验证结果。
  66. """
  67. logger.info(f"🔧 [Tool] valid_sql - 待验证SQL (前100字符): {sql[:100]}...")
  68. if not sql or sql.strip() == "":
  69. logger.warning(" SQL验证失败:SQL语句为空。")
  70. return "SQL验证失败:SQL语句为空"
  71. sql_upper = sql.upper().strip()
  72. if not any(keyword in sql_upper for keyword in ['SELECT', 'WITH']):
  73. logger.warning(f" SQL验证失败:不是有效的查询语句。SQL: {sql}")
  74. return "SQL验证失败:不是有效的查询语句"
  75. # 简单的安全检查
  76. dangerous_patterns = [r'\bDROP\b', r'\bDELETE\b', r'\bTRUNCATE\b', r'\bALTER\b', r'\bCREATE\b', r'\bUPDATE\b']
  77. for pattern in dangerous_patterns:
  78. if re.search(pattern, sql_upper):
  79. keyword = pattern.replace(r'\b', '').replace('\\', '')
  80. logger.error(f" SQL验证失败:包含危险操作 {keyword}。SQL: {sql}")
  81. return f"SQL验证失败:包含危险操作 {keyword}"
  82. logger.info(f" ✅ SQL验证通过。")
  83. return "SQL验证通过:语法正确"
  84. @tool
  85. def run_sql(sql: str) -> str:
  86. """
  87. 执行SQL查询并以JSON字符串格式返回结果。
  88. Args:
  89. sql: 待执行的SQL语句。
  90. Returns:
  91. JSON字符串格式的查询结果,或包含错误的JSON字符串。
  92. """
  93. logger.info(f"🔧 [Tool] run_sql - 待执行SQL (前100字符): {sql[:100]}...")
  94. try:
  95. from common.vanna_instance import get_vanna_instance
  96. vn = get_vanna_instance()
  97. df = vn.run_sql(sql)
  98. print("-------------run_sql() df -------------------")
  99. print(df)
  100. print("--------------------------------")
  101. if df is None:
  102. logger.warning(" SQL执行成功,但查询结果为空。")
  103. result = {"status": "success", "data": [], "message": "查询无结果"}
  104. return json.dumps(result, ensure_ascii=False)
  105. logger.info(f" ✅ SQL执行成功,返回 {len(df)} 条记录。")
  106. # 将DataFrame转换为JSON,并妥善处理datetime等特殊类型
  107. return df.to_json(orient='records', date_format='iso')
  108. except Exception as e:
  109. logger.error(f" SQL执行过程中发生异常: {e}", exc_info=True)
  110. error_result = {"status": "error", "error_message": str(e)}
  111. return json.dumps(error_result, ensure_ascii=False)
  112. # 将所有工具函数收集到一个列表中,方便Agent导入和使用
  113. sql_tools = [generate_sql, valid_sql, run_sql]