123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- """
- 数据库查询相关的工具集
- """
- import re
- import json
- import logging
- from langchain_core.tools import tool
- from pydantic.v1 import BaseModel, Field
- from typing import List, Dict, Any
- import pandas as pd
- logger = logging.getLogger(__name__)
- # --- Pydantic Schema for Tool Arguments ---
- class GenerateSqlArgs(BaseModel):
- """Input schema for the generate_sql tool."""
- question: str = Field(description="The user's question to be converted to SQL.")
- history_messages: List[Dict[str, Any]] = Field(
- default=[],
- description="The conversation history messages for context."
- )
- # --- Tool Functions ---
- @tool(args_schema=GenerateSqlArgs)
- def generate_sql(question: str, history_messages: List[Dict[str, Any]] = None) -> str:
- """
- Generates an SQL query based on the user's question and the conversation history.
- """
- logger.info(f"🔧 [Tool] generate_sql - Question: '{question}'")
-
- if history_messages is None:
- history_messages = []
-
- logger.info(f" History contains {len(history_messages)} messages.")
- # Combine history and the current question to form a rich prompt
- history_str = "\n".join([f"{msg['type']}: {msg.get('content', '') or ''}" for msg in history_messages])
- enriched_question = f"""\nBased on the following conversation history:
- ---
- {history_str}
- ---
- Please provide an SQL query that answers this specific question: {question}"""
- try:
- from common.vanna_instance import get_vanna_instance
- vn = get_vanna_instance()
- sql = vn.generate_sql(enriched_question)
- if not sql or sql.strip() == "":
- if hasattr(vn, 'last_llm_explanation') and vn.last_llm_explanation:
- error_info = vn.last_llm_explanation
- logger.warning(f" Vanna returned an explanation instead of SQL: {error_info}")
- return f"Database query failed. Reason: {error_info}"
- else:
- logger.warning(" Vanna failed to generate SQL and provided no explanation.")
- return "Could not generate SQL: The question may not be suitable for a database query."
- sql_upper = sql.upper().strip()
- if not any(keyword in sql_upper for keyword in ['SELECT', 'WITH']):
- logger.warning(f" Vanna returned a message that does not appear to be a valid SQL query: {sql}")
- return f"Database query failed. Reason: {sql}"
- logger.info(f" ✅ SQL Generated Successfully: {sql}")
- return sql
- except Exception as e:
- logger.error(f" An exception occurred during SQL generation: {e}", exc_info=True)
- return f"SQL generation failed: {str(e)}"
- @tool
- def valid_sql(sql: str) -> str:
- """
- 验证SQL语句的正确性和安全性。
- Args:
- sql: 待验证的SQL语句。
- Returns:
- 验证结果。
- """
- logger.info(f"🔧 [Tool] valid_sql - 待验证SQL (前100字符): {sql[:100]}...")
- if not sql or sql.strip() == "":
- logger.warning(" SQL验证失败:SQL语句为空。")
- return "SQL验证失败:SQL语句为空"
- sql_upper = sql.upper().strip()
- if not any(keyword in sql_upper for keyword in ['SELECT', 'WITH']):
- logger.warning(f" SQL验证失败:不是有效的查询语句。SQL: {sql}")
- return "SQL验证失败:不是有效的查询语句"
-
- # 简单的安全检查
- dangerous_patterns = [r'\bDROP\b', r'\bDELETE\b', r'\bTRUNCATE\b', r'\bALTER\b', r'\bCREATE\b', r'\bUPDATE\b']
- for pattern in dangerous_patterns:
- if re.search(pattern, sql_upper):
- keyword = pattern.replace(r'\b', '').replace('\\', '')
- logger.error(f" SQL验证失败:包含危险操作 {keyword}。SQL: {sql}")
- return f"SQL验证失败:包含危险操作 {keyword}"
- logger.info(f" ✅ SQL验证通过。")
- return "SQL验证通过:语法正确"
- @tool
- def run_sql(sql: str) -> str:
- """
- 执行SQL查询并以JSON字符串格式返回结果。
- Args:
- sql: 待执行的SQL语句。
- Returns:
- JSON字符串格式的查询结果,或包含错误的JSON字符串。
- """
- logger.info(f"🔧 [Tool] run_sql - 待执行SQL (前100字符): {sql[:100]}...")
- try:
- from common.vanna_instance import get_vanna_instance
- vn = get_vanna_instance()
- df = vn.run_sql(sql)
- print("-------------run_sql() df -------------------")
- print(df)
- print("--------------------------------")
- if df is None:
- logger.warning(" SQL执行成功,但查询结果为空。")
- result = {"status": "success", "data": [], "message": "查询无结果"}
- return json.dumps(result, ensure_ascii=False)
- logger.info(f" ✅ SQL执行成功,返回 {len(df)} 条记录。")
- # 将DataFrame转换为JSON,并妥善处理datetime等特殊类型
- return df.to_json(orient='records', date_format='iso')
- except Exception as e:
- logger.error(f" SQL执行过程中发生异常: {e}", exc_info=True)
- error_result = {"status": "error", "error_message": str(e)}
- return json.dumps(error_result, ensure_ascii=False)
-
- # 将所有工具函数收集到一个列表中,方便Agent导入和使用
- sql_tools = [generate_sql, valid_sql, run_sql]
|