embedding_function.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. import requests
  2. import time
  3. import numpy as np
  4. from typing import List, Callable
  5. class EmbeddingFunction:
  6. def __init__(self, model_name: str, api_key: str, base_url: str, embedding_dimension: int):
  7. self.model_name = model_name
  8. self.api_key = api_key
  9. self.base_url = base_url
  10. self.embedding_dimension = embedding_dimension
  11. self.headers = {
  12. "Authorization": f"Bearer {api_key}",
  13. "Content-Type": "application/json"
  14. }
  15. self.max_retries = 2 # 设置默认的最大重试次数
  16. self.retry_interval = 2 # 设置默认的重试间隔秒数
  17. self.normalize_embeddings = True # 设置默认是否归一化
  18. def _normalize_vector(self, vector: List[float]) -> List[float]:
  19. """
  20. 对向量进行L2归一化
  21. Args:
  22. vector: 输入向量
  23. Returns:
  24. List[float]: 归一化后的向量
  25. """
  26. if not vector:
  27. return []
  28. norm = np.linalg.norm(vector)
  29. if norm == 0:
  30. return vector
  31. return (np.array(vector) / norm).tolist()
  32. def __call__(self, input) -> List[List[float]]:
  33. """
  34. 为文本列表生成嵌入向量
  35. Args:
  36. input: 要嵌入的文本或文本列表
  37. Returns:
  38. List[List[float]]: 嵌入向量列表
  39. """
  40. if not isinstance(input, list):
  41. input = [input]
  42. embeddings = []
  43. for text in input:
  44. # 直接调用generate_embedding,让它处理异常
  45. try:
  46. vector = self.generate_embedding(text)
  47. embeddings.append(vector)
  48. except Exception as e:
  49. print(f"为文本 '{text}' 生成embedding失败: {e}")
  50. # 重新抛出异常,不返回零向量
  51. raise e
  52. return embeddings
  53. def embed_documents(self, texts: List[str]) -> List[List[float]]:
  54. """
  55. 为文档列表生成嵌入向量 (LangChain 接口)
  56. Args:
  57. texts: 要嵌入的文档列表
  58. Returns:
  59. List[List[float]]: 嵌入向量列表
  60. """
  61. return self.__call__(texts)
  62. def embed_query(self, text: str) -> List[float]:
  63. """
  64. 为查询文本生成嵌入向量 (LangChain 接口)
  65. Args:
  66. text: 要嵌入的查询文本
  67. Returns:
  68. List[float]: 嵌入向量
  69. """
  70. return self.generate_embedding(text)
  71. def generate_embedding(self, text: str) -> List[float]:
  72. """
  73. 为单个文本生成嵌入向量
  74. Args:
  75. text (str): 要嵌入的文本
  76. Returns:
  77. List[float]: 嵌入向量
  78. """
  79. # 处理空文本
  80. if not text or len(text.strip()) == 0:
  81. # 空文本返回零向量是合理的行为
  82. if self.embedding_dimension is None:
  83. raise ValueError("Embedding dimension (self.embedding_dimension) 未被正确初始化。")
  84. return [0.0] * self.embedding_dimension
  85. # 准备请求体
  86. payload = {
  87. "model": self.model_name,
  88. "input": text,
  89. "encoding_format": "float"
  90. }
  91. # 添加重试机制
  92. retries = 0
  93. while retries <= self.max_retries:
  94. try:
  95. # 发送API请求
  96. url = self.base_url
  97. if not url.endswith("/embeddings"):
  98. url = url.rstrip("/") # 移除尾部斜杠,避免双斜杠
  99. if not url.endswith("/v1/embeddings"):
  100. url = f"{url}/embeddings"
  101. response = requests.post(
  102. url,
  103. json=payload,
  104. headers=self.headers,
  105. timeout=30 # 设置超时时间
  106. )
  107. # 检查响应状态
  108. if response.status_code != 200:
  109. error_msg = f"API请求错误: {response.status_code}, {response.text}"
  110. # 根据错误码判断是否需要重试
  111. if response.status_code in (429, 500, 502, 503, 504):
  112. retries += 1
  113. if retries <= self.max_retries:
  114. wait_time = self.retry_interval * (2 ** (retries - 1)) # 指数退避
  115. print(f"API请求失败,等待 {wait_time} 秒后重试 ({retries}/{self.max_retries})")
  116. time.sleep(wait_time)
  117. continue
  118. raise ValueError(error_msg)
  119. # 解析响应
  120. result = response.json()
  121. # 提取embedding向量
  122. if "data" in result and len(result["data"]) > 0 and "embedding" in result["data"][0]:
  123. vector = result["data"][0]["embedding"]
  124. # 如果是首次调用且未提供维度,则自动设置
  125. if self.embedding_dimension is None:
  126. self.embedding_dimension = len(vector)
  127. else:
  128. # 验证向量维度
  129. actual_dim = len(vector)
  130. if actual_dim != self.embedding_dimension:
  131. print(f"警告: 向量维度不匹配: 期望 {self.embedding_dimension}, 实际 {actual_dim}")
  132. # 如果需要归一化
  133. if self.normalize_embeddings:
  134. vector = self._normalize_vector(vector)
  135. return vector
  136. else:
  137. error_msg = f"API返回格式异常: {result}"
  138. raise ValueError(error_msg)
  139. except Exception as e:
  140. retries += 1
  141. if retries <= self.max_retries:
  142. wait_time = self.retry_interval * (2 ** (retries - 1)) # 指数退避
  143. print(f"生成embedding时出错: {str(e)}, 等待 {wait_time} 秒后重试 ({retries}/{self.max_retries})")
  144. time.sleep(wait_time)
  145. else:
  146. # 抛出异常而不是返回零向量,确保问题不被掩盖
  147. raise RuntimeError(f"生成embedding失败,已重试{self.max_retries}次: {str(e)}")
  148. # 这里不应该到达,但为了完整性添加
  149. raise RuntimeError("生成embedding失败")
  150. def test_connection(self, test_text="测试文本") -> dict:
  151. """
  152. 测试嵌入模型的连接和功能
  153. Args:
  154. test_text (str): 用于测试的文本
  155. Returns:
  156. dict: 包含测试结果的字典,包括是否成功、维度信息等
  157. """
  158. result = {
  159. "success": False,
  160. "model": self.model_name,
  161. "base_url": self.base_url,
  162. "message": "",
  163. "actual_dimension": None,
  164. "expected_dimension": self.embedding_dimension
  165. }
  166. try:
  167. print(f"测试嵌入模型连接 - 模型: {self.model_name}")
  168. print(f"API服务地址: {self.base_url}")
  169. # 验证配置
  170. if not self.api_key:
  171. result["message"] = "API密钥未设置或为空"
  172. return result
  173. if not self.base_url:
  174. result["message"] = "API服务地址未设置或为空"
  175. return result
  176. # 测试生成向量
  177. vector = self.generate_embedding(test_text)
  178. actual_dimension = len(vector)
  179. result["success"] = True
  180. result["actual_dimension"] = actual_dimension
  181. # 检查维度是否一致
  182. if actual_dimension != self.embedding_dimension:
  183. result["message"] = f"警告: 模型实际生成的向量维度({actual_dimension})与配置维度({self.embedding_dimension})不一致"
  184. else:
  185. result["message"] = f"连接测试成功,向量维度: {actual_dimension}"
  186. return result
  187. except Exception as e:
  188. result["message"] = f"连接测试失败: {str(e)}"
  189. return result
  190. def test_embedding_connection() -> dict:
  191. """
  192. 测试嵌入模型连接和配置是否正确
  193. Returns:
  194. dict: 测试结果,包括成功/失败状态、错误消息等
  195. """
  196. try:
  197. # 获取嵌入函数实例
  198. embedding_function = get_embedding_function()
  199. # 测试连接
  200. test_result = embedding_function.test_connection()
  201. if test_result["success"]:
  202. print(f"嵌入模型连接测试成功!")
  203. if "警告" in test_result["message"]:
  204. print(test_result["message"])
  205. print(f"建议将app_config.py中的EMBEDDING_CONFIG['embedding_dimension']修改为{test_result['actual_dimension']}")
  206. else:
  207. print(f"嵌入模型连接测试失败: {test_result['message']}")
  208. return test_result
  209. except Exception as e:
  210. error_message = f"无法测试嵌入模型连接: {str(e)}"
  211. print(error_message)
  212. return {
  213. "success": False,
  214. "message": error_message
  215. }
  216. def get_embedding_function():
  217. """
  218. 根据当前配置创建合适的EmbeddingFunction实例
  219. 支持API和Ollama两种提供商
  220. Returns:
  221. EmbeddingFunction或OllamaEmbeddingFunction: 根据配置类型返回相应的实例
  222. Raises:
  223. ImportError: 如果无法导入必要的模块
  224. ValueError: 如果配置无效
  225. """
  226. try:
  227. from common.utils import get_current_embedding_config, is_using_ollama_embedding
  228. except ImportError:
  229. raise ImportError("无法导入 common.utils,请确保该文件存在")
  230. # 获取当前embedding配置
  231. embedding_config = get_current_embedding_config()
  232. if is_using_ollama_embedding():
  233. # 使用Ollama Embedding
  234. try:
  235. from customembedding.ollama_embedding import OllamaEmbeddingFunction
  236. except ImportError:
  237. raise ImportError("无法导入 OllamaEmbeddingFunction,请确保 customembedding 包存在")
  238. return OllamaEmbeddingFunction(
  239. model_name=embedding_config["model_name"],
  240. base_url=embedding_config["base_url"],
  241. embedding_dimension=embedding_config["embedding_dimension"]
  242. )
  243. else:
  244. # 使用API Embedding
  245. try:
  246. api_key = embedding_config["api_key"]
  247. model_name = embedding_config["model_name"]
  248. base_url = embedding_config["base_url"]
  249. embedding_dimension = embedding_config["embedding_dimension"]
  250. if api_key is None:
  251. raise KeyError("API模式下 'api_key' 未设置 (可能环境变量 EMBEDDING_API_KEY 未定义)")
  252. except KeyError as e:
  253. raise KeyError(f"API Embedding配置中缺少必要的键或值无效:{e}")
  254. return EmbeddingFunction(
  255. model_name=model_name,
  256. api_key=api_key,
  257. base_url=base_url,
  258. embedding_dimension=embedding_dimension
  259. )