12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172 |
- # agent/citu_agent.py
- from typing import Dict, Any, Literal
- from langgraph.graph import StateGraph, END
- from langchain.agents import AgentExecutor, create_openai_tools_agent
- from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
- from langchain_core.messages import SystemMessage, HumanMessage
- from agent.state import AgentState
- from agent.classifier import QuestionClassifier
- from agent.tools import TOOLS, generate_sql, execute_sql, generate_summary, general_chat
- from agent.tools.utils import get_compatible_llm
- from app_config import ENABLE_RESULT_SUMMARY
- class CituLangGraphAgent:
- """Citu LangGraph智能助手主类 - 使用@tool装饰器 + Agent工具调用"""
-
- def __init__(self):
- # 加载配置
- try:
- from agent.config import get_current_config, get_nested_config
- self.config = get_current_config()
- print("[CITU_AGENT] 加载Agent配置完成")
- except ImportError:
- self.config = {}
- print("[CITU_AGENT] 配置文件不可用,使用默认配置")
-
- self.classifier = QuestionClassifier()
- self.tools = TOOLS
- self.llm = get_compatible_llm()
-
- # 注意:现在使用直接工具调用模式,不再需要预创建Agent执行器
- print("[CITU_AGENT] 使用直接工具调用模式")
-
- # 不在构造时创建workflow,改为动态创建以支持路由模式参数
- # self.workflow = self._create_workflow()
- print("[CITU_AGENT] LangGraph Agent with Direct Tools初始化完成")
-
- def _create_workflow(self, routing_mode: str = None) -> StateGraph:
- """根据路由模式创建不同的工作流"""
- # 确定使用的路由模式
- if routing_mode:
- QUESTION_ROUTING_MODE = routing_mode
- print(f"[CITU_AGENT] 创建工作流,使用传入的路由模式: {QUESTION_ROUTING_MODE}")
- else:
- try:
- from app_config import QUESTION_ROUTING_MODE
- print(f"[CITU_AGENT] 创建工作流,使用配置文件路由模式: {QUESTION_ROUTING_MODE}")
- except ImportError:
- QUESTION_ROUTING_MODE = "hybrid"
- print(f"[CITU_AGENT] 配置导入失败,使用默认路由模式: {QUESTION_ROUTING_MODE}")
-
- workflow = StateGraph(AgentState)
-
- # 根据路由模式创建不同的工作流
- if QUESTION_ROUTING_MODE == "database_direct":
- # 直接数据库模式:跳过分类,直接进入数据库处理(使用新的拆分节点)
- workflow.add_node("init_direct_database", self._init_direct_database_node)
- workflow.add_node("agent_sql_generation", self._agent_sql_generation_node)
- workflow.add_node("agent_sql_execution", self._agent_sql_execution_node)
- workflow.add_node("format_response", self._format_response_node)
-
- workflow.set_entry_point("init_direct_database")
-
- # 添加条件路由
- workflow.add_edge("init_direct_database", "agent_sql_generation")
- workflow.add_conditional_edges(
- "agent_sql_generation",
- self._route_after_sql_generation,
- {
- "continue_execution": "agent_sql_execution",
- "return_to_user": "format_response"
- }
- )
- workflow.add_edge("agent_sql_execution", "format_response")
- workflow.add_edge("format_response", END)
-
- elif QUESTION_ROUTING_MODE == "chat_direct":
- # 直接聊天模式:跳过分类,直接进入聊天处理
- workflow.add_node("init_direct_chat", self._init_direct_chat_node)
- workflow.add_node("agent_chat", self._agent_chat_node)
- workflow.add_node("format_response", self._format_response_node)
-
- workflow.set_entry_point("init_direct_chat")
- workflow.add_edge("init_direct_chat", "agent_chat")
- workflow.add_edge("agent_chat", "format_response")
- workflow.add_edge("format_response", END)
-
- else:
- # 其他模式(hybrid, llm_only):使用新的拆分工作流
- workflow.add_node("classify_question", self._classify_question_node)
- workflow.add_node("agent_chat", self._agent_chat_node)
- workflow.add_node("agent_sql_generation", self._agent_sql_generation_node)
- workflow.add_node("agent_sql_execution", self._agent_sql_execution_node)
- workflow.add_node("format_response", self._format_response_node)
-
- workflow.set_entry_point("classify_question")
-
- # 添加条件边:分类后的路由
- workflow.add_conditional_edges(
- "classify_question",
- self._route_after_classification,
- {
- "DATABASE": "agent_sql_generation",
- "CHAT": "agent_chat"
- }
- )
-
- # 添加条件边:SQL生成后的路由
- workflow.add_conditional_edges(
- "agent_sql_generation",
- self._route_after_sql_generation,
- {
- "continue_execution": "agent_sql_execution",
- "return_to_user": "format_response"
- }
- )
-
- # 普通边
- workflow.add_edge("agent_chat", "format_response")
- workflow.add_edge("agent_sql_execution", "format_response")
- workflow.add_edge("format_response", END)
-
- return workflow.compile()
-
- def _init_direct_database_node(self, state: AgentState) -> AgentState:
- """初始化直接数据库模式的状态"""
- try:
- # 从state中获取路由模式,而不是从配置文件读取
- routing_mode = state.get("routing_mode", "database_direct")
-
- # 设置直接数据库模式的分类状态
- state["question_type"] = "DATABASE"
- state["classification_confidence"] = 1.0
- state["classification_reason"] = "配置为直接数据库查询模式"
- state["classification_method"] = "direct_database"
- state["routing_mode"] = routing_mode
- state["current_step"] = "direct_database_init"
- state["execution_path"].append("init_direct_database")
-
- print(f"[DIRECT_DATABASE] 直接数据库模式初始化完成")
-
- return state
-
- except Exception as e:
- print(f"[ERROR] 直接数据库模式初始化异常: {str(e)}")
- state["error"] = f"直接数据库模式初始化失败: {str(e)}"
- state["error_code"] = 500
- state["execution_path"].append("init_direct_database_error")
- return state
- def _init_direct_chat_node(self, state: AgentState) -> AgentState:
- """初始化直接聊天模式的状态"""
- try:
- # 从state中获取路由模式,而不是从配置文件读取
- routing_mode = state.get("routing_mode", "chat_direct")
-
- # 设置直接聊天模式的分类状态
- state["question_type"] = "CHAT"
- state["classification_confidence"] = 1.0
- state["classification_reason"] = "配置为直接聊天模式"
- state["classification_method"] = "direct_chat"
- state["routing_mode"] = routing_mode
- state["current_step"] = "direct_chat_init"
- state["execution_path"].append("init_direct_chat")
-
- print(f"[DIRECT_CHAT] 直接聊天模式初始化完成")
-
- return state
-
- except Exception as e:
- print(f"[ERROR] 直接聊天模式初始化异常: {str(e)}")
- state["error"] = f"直接聊天模式初始化失败: {str(e)}"
- state["error_code"] = 500
- state["execution_path"].append("init_direct_chat_error")
- return state
-
- def _classify_question_node(self, state: AgentState) -> AgentState:
- """问题分类节点 - 支持渐进式分类策略"""
- try:
- # 从state中获取路由模式,而不是从配置文件读取
- routing_mode = state.get("routing_mode", "hybrid")
-
- print(f"[CLASSIFY_NODE] 开始分类问题: {state['question']}")
-
- # 获取上下文类型(如果有的话)
- context_type = state.get("context_type")
- if context_type:
- print(f"[CLASSIFY_NODE] 检测到上下文类型: {context_type}")
-
- # 使用渐进式分类策略,传递路由模式
- classification_result = self.classifier.classify(state["question"], context_type, routing_mode)
-
- # 更新状态
- state["question_type"] = classification_result.question_type
- state["classification_confidence"] = classification_result.confidence
- state["classification_reason"] = classification_result.reason
- state["classification_method"] = classification_result.method
- state["routing_mode"] = routing_mode
- state["current_step"] = "classified"
- state["execution_path"].append("classify")
-
- print(f"[CLASSIFY_NODE] 分类结果: {classification_result.question_type}, 置信度: {classification_result.confidence}")
- print(f"[CLASSIFY_NODE] 路由模式: {routing_mode}, 分类方法: {classification_result.method}")
-
- return state
-
- except Exception as e:
- print(f"[ERROR] 问题分类异常: {str(e)}")
- state["error"] = f"问题分类失败: {str(e)}"
- state["error_code"] = 500
- state["execution_path"].append("classify_error")
- return state
-
- async def _agent_sql_generation_node(self, state: AgentState) -> AgentState:
- """SQL生成验证节点 - 负责生成SQL、验证SQL和决定路由"""
- try:
- print(f"[SQL_GENERATION] 开始处理SQL生成和验证: {state['question']}")
-
- question = state["question"]
-
- # 步骤1:生成SQL
- print(f"[SQL_GENERATION] 步骤1:生成SQL")
- sql_result = generate_sql.invoke({"question": question, "allow_llm_to_see_data": True})
-
- if not sql_result.get("success"):
- # SQL生成失败的统一处理
- error_message = sql_result.get("error", "")
- error_type = sql_result.get("error_type", "")
-
- #print(f"[SQL_GENERATION] SQL生成失败: {error_message}")
- print(f"[DEBUG] error_type = '{error_type}'")
-
- # 根据错误类型生成用户提示
- if "no relevant tables" in error_message.lower() or "table not found" in error_message.lower():
- user_prompt = "数据库中没有相关的表或字段信息,请您提供更多具体信息或修改问题。"
- failure_reason = "missing_database_info"
- elif "ambiguous" in error_message.lower() or "more information" in error_message.lower():
- user_prompt = "您的问题需要更多信息才能准确查询,请提供更详细的描述。"
- failure_reason = "ambiguous_question"
- elif error_type == "llm_explanation" or error_type == "generation_failed_with_explanation":
- # 对于解释性文本,直接设置为聊天响应
- state["chat_response"] = error_message + " 请尝试提问其它问题。"
- state["sql_generation_success"] = False
- state["validation_error_type"] = "llm_explanation"
- state["current_step"] = "sql_generation_completed"
- state["execution_path"].append("agent_sql_generation")
- print(f"[SQL_GENERATION] 返回LLM解释性答案: {error_message}")
- return state
- else:
- user_prompt = "无法生成有效的SQL查询,请尝试重新描述您的问题。"
- failure_reason = "unknown_generation_failure"
-
- # 统一返回失败状态
- state["sql_generation_success"] = False
- state["user_prompt"] = user_prompt
- state["validation_error_type"] = failure_reason
- state["current_step"] = "sql_generation_failed"
- state["execution_path"].append("agent_sql_generation_failed")
-
- print(f"[SQL_GENERATION] 生成失败: {failure_reason} - {user_prompt}")
- return state
-
- sql = sql_result.get("sql")
- state["sql"] = sql
-
- # 步骤1.5:检查是否为解释性响应而非SQL
- error_type = sql_result.get("error_type")
- if error_type == "llm_explanation" or error_type == "generation_failed_with_explanation":
- # LLM返回了解释性文本,直接作为最终答案
- explanation = sql_result.get("error", "")
- state["chat_response"] = explanation + " 请尝试提问其它问题。"
- state["sql_generation_success"] = False
- state["validation_error_type"] = "llm_explanation"
- state["current_step"] = "sql_generation_completed"
- state["execution_path"].append("agent_sql_generation")
- print(f"[SQL_GENERATION] 返回LLM解释性答案: {explanation}")
- return state
-
- if sql:
- print(f"[SQL_GENERATION] SQL生成成功: {sql}")
- else:
- print(f"[SQL_GENERATION] SQL为空,但不是解释性响应")
- # 这种情况应该很少见,但为了安全起见保留原有的错误处理
- return state
-
- # 额外验证:检查SQL格式(防止工具误判)
- from agent.tools.utils import _is_valid_sql_format
- if not _is_valid_sql_format(sql):
- # 内容看起来不是SQL,当作解释性响应处理
- state["chat_response"] = sql + " 请尝试提问其它问题。"
- state["sql_generation_success"] = False
- state["validation_error_type"] = "invalid_sql_format"
- state["current_step"] = "sql_generation_completed"
- state["execution_path"].append("agent_sql_generation")
- print(f"[SQL_GENERATION] 内容不是有效SQL,当作解释返回: {sql}")
- return state
-
- # 步骤2:SQL验证(如果启用)
- if self._is_sql_validation_enabled():
- print(f"[SQL_GENERATION] 步骤2:验证SQL")
- validation_result = await self._validate_sql_with_custom_priority(sql)
-
- if not validation_result.get("valid"):
- # 验证失败,检查是否可以修复
- error_type = validation_result.get("error_type")
- error_message = validation_result.get("error_message")
- can_repair = validation_result.get("can_repair", False)
-
- print(f"[SQL_GENERATION] SQL验证失败: {error_type} - {error_message}")
-
- if error_type == "forbidden_keywords":
- # 禁止词错误,直接失败,不尝试修复
- state["sql_generation_success"] = False
- state["sql_validation_success"] = False
- state["user_prompt"] = error_message
- state["validation_error_type"] = "forbidden_keywords"
- state["current_step"] = "sql_validation_failed"
- state["execution_path"].append("forbidden_keywords_failed")
- print(f"[SQL_GENERATION] 禁止词验证失败,直接结束")
- return state
-
- elif error_type == "syntax_error" and can_repair and self._is_auto_repair_enabled():
- # 语法错误,尝试修复(仅一次)
- print(f"[SQL_GENERATION] 尝试修复SQL语法错误(仅一次): {error_message}")
- state["sql_repair_attempted"] = True
-
- repair_result = await self._attempt_sql_repair_once(sql, error_message)
-
- if repair_result.get("success"):
- # 修复成功
- repaired_sql = repair_result.get("repaired_sql")
- state["sql"] = repaired_sql
- state["sql_generation_success"] = True
- state["sql_validation_success"] = True
- state["sql_repair_success"] = True
- state["current_step"] = "sql_generation_completed"
- state["execution_path"].append("sql_repair_success")
- print(f"[SQL_GENERATION] SQL修复成功: {repaired_sql}")
- return state
- else:
- # 修复失败,直接结束
- repair_error = repair_result.get("error", "修复失败")
- print(f"[SQL_GENERATION] SQL修复失败: {repair_error}")
- state["sql_generation_success"] = False
- state["sql_validation_success"] = False
- state["sql_repair_success"] = False
- state["user_prompt"] = f"SQL语法修复失败: {repair_error}"
- state["validation_error_type"] = "syntax_repair_failed"
- state["current_step"] = "sql_repair_failed"
- state["execution_path"].append("sql_repair_failed")
- return state
- else:
- # 不启用修复或其他错误类型,直接失败
- state["sql_generation_success"] = False
- state["sql_validation_success"] = False
- state["user_prompt"] = f"SQL验证失败: {error_message}"
- state["validation_error_type"] = error_type
- state["current_step"] = "sql_validation_failed"
- state["execution_path"].append("sql_validation_failed")
- print(f"[SQL_GENERATION] SQL验证失败,不尝试修复")
- return state
- else:
- print(f"[SQL_GENERATION] SQL验证通过")
- state["sql_validation_success"] = True
- else:
- print(f"[SQL_GENERATION] 跳过SQL验证(未启用)")
- state["sql_validation_success"] = True
-
- # 生成和验证都成功
- state["sql_generation_success"] = True
- state["current_step"] = "sql_generation_completed"
- state["execution_path"].append("agent_sql_generation")
-
- print(f"[SQL_GENERATION] SQL生成验证完成,准备执行")
- return state
-
- except Exception as e:
- print(f"[ERROR] SQL生成验证节点异常: {str(e)}")
- import traceback
- print(f"[ERROR] 详细错误信息: {traceback.format_exc()}")
- state["sql_generation_success"] = False
- state["sql_validation_success"] = False
- state["user_prompt"] = f"SQL生成验证异常: {str(e)}"
- state["validation_error_type"] = "node_exception"
- state["current_step"] = "sql_generation_error"
- state["execution_path"].append("agent_sql_generation_error")
- return state
- def _agent_sql_execution_node(self, state: AgentState) -> AgentState:
- """SQL执行节点 - 负责执行已验证的SQL和生成摘要"""
- try:
- print(f"[SQL_EXECUTION] 开始执行SQL: {state.get('sql', 'N/A')}")
-
- sql = state.get("sql")
- question = state["question"]
-
- if not sql:
- print(f"[SQL_EXECUTION] 没有可执行的SQL")
- state["error"] = "没有可执行的SQL语句"
- state["error_code"] = 500
- state["current_step"] = "sql_execution_error"
- state["execution_path"].append("agent_sql_execution_error")
- return state
-
- # 步骤1:执行SQL
- print(f"[SQL_EXECUTION] 步骤1:执行SQL")
- execute_result = execute_sql.invoke({"sql": sql})
-
- if not execute_result.get("success"):
- print(f"[SQL_EXECUTION] SQL执行失败: {execute_result.get('error')}")
- state["error"] = execute_result.get("error", "SQL执行失败")
- state["error_code"] = 500
- state["current_step"] = "sql_execution_error"
- state["execution_path"].append("agent_sql_execution_error")
- return state
-
- query_result = execute_result.get("data_result")
- state["query_result"] = query_result
- print(f"[SQL_EXECUTION] SQL执行成功,返回 {query_result.get('row_count', 0)} 行数据")
-
- # 步骤2:生成摘要(根据配置和数据情况)
- if ENABLE_RESULT_SUMMARY and query_result.get('row_count', 0) > 0:
- print(f"[SQL_EXECUTION] 步骤2:生成摘要")
-
- # 重要:提取原始问题用于摘要生成,避免历史记录循环嵌套
- original_question = self._extract_original_question(question)
- print(f"[SQL_EXECUTION] 原始问题: {original_question}")
-
- summary_result = generate_summary.invoke({
- "question": original_question, # 使用原始问题而不是enhanced_question
- "query_result": query_result,
- "sql": sql
- })
-
- if not summary_result.get("success"):
- print(f"[SQL_EXECUTION] 摘要生成失败: {summary_result.get('message')}")
- # 摘要生成失败不是致命错误,使用默认摘要
- state["summary"] = f"查询执行完成,共返回 {query_result.get('row_count', 0)} 条记录。"
- else:
- state["summary"] = summary_result.get("summary")
- print(f"[SQL_EXECUTION] 摘要生成成功")
- else:
- print(f"[SQL_EXECUTION] 跳过摘要生成(ENABLE_RESULT_SUMMARY={ENABLE_RESULT_SUMMARY},数据行数={query_result.get('row_count', 0)})")
- # 不生成摘要时,不设置summary字段,让格式化响应节点决定如何处理
-
- state["current_step"] = "sql_execution_completed"
- state["execution_path"].append("agent_sql_execution")
-
- print(f"[SQL_EXECUTION] SQL执行完成")
- return state
-
- except Exception as e:
- print(f"[ERROR] SQL执行节点异常: {str(e)}")
- import traceback
- print(f"[ERROR] 详细错误信息: {traceback.format_exc()}")
- state["error"] = f"SQL执行失败: {str(e)}"
- state["error_code"] = 500
- state["current_step"] = "sql_execution_error"
- state["execution_path"].append("agent_sql_execution_error")
- return state
- def _agent_database_node(self, state: AgentState) -> AgentState:
- """
- 数据库Agent节点 - 直接工具调用模式 [已废弃]
-
- 注意:此方法已被拆分为 _agent_sql_generation_node 和 _agent_sql_execution_node
- 保留此方法仅为向后兼容,新的工作流使用拆分后的节点
- """
- try:
- print(f"[DATABASE_AGENT] ⚠️ 使用已废弃的database节点,建议使用新的拆分节点")
- print(f"[DATABASE_AGENT] 开始处理数据库查询: {state['question']}")
-
- question = state["question"]
-
- # 步骤1:生成SQL
- print(f"[DATABASE_AGENT] 步骤1:生成SQL")
- sql_result = generate_sql.invoke({"question": question, "allow_llm_to_see_data": True})
-
- if not sql_result.get("success"):
- print(f"[DATABASE_AGENT] SQL生成失败: {sql_result.get('error')}")
- state["error"] = sql_result.get("error", "SQL生成失败")
- state["error_code"] = 500
- state["current_step"] = "database_error"
- state["execution_path"].append("agent_database_error")
- return state
-
- sql = sql_result.get("sql")
- state["sql"] = sql
- print(f"[DATABASE_AGENT] SQL生成成功: {sql}")
-
- # 步骤1.5:检查是否为解释性响应而非SQL
- error_type = sql_result.get("error_type")
- if error_type == "llm_explanation":
- # LLM返回了解释性文本,直接作为最终答案
- explanation = sql_result.get("error", "")
- state["chat_response"] = explanation + " 请尝试提问其它问题。"
- state["current_step"] = "database_completed"
- state["execution_path"].append("agent_database")
- print(f"[DATABASE_AGENT] 返回LLM解释性答案: {explanation}")
- return state
-
- # 额外验证:检查SQL格式(防止工具误判)
- from agent.tools.utils import _is_valid_sql_format
- if not _is_valid_sql_format(sql):
- # 内容看起来不是SQL,当作解释性响应处理
- state["chat_response"] = sql + " 请尝试提问其它问题。"
- state["current_step"] = "database_completed"
- state["execution_path"].append("agent_database")
- print(f"[DATABASE_AGENT] 内容不是有效SQL,当作解释返回: {sql}")
- return state
-
- # 步骤2:执行SQL
- print(f"[DATABASE_AGENT] 步骤2:执行SQL")
- execute_result = execute_sql.invoke({"sql": sql})
-
- if not execute_result.get("success"):
- print(f"[DATABASE_AGENT] SQL执行失败: {execute_result.get('error')}")
- state["error"] = execute_result.get("error", "SQL执行失败")
- state["error_code"] = 500
- state["current_step"] = "database_error"
- state["execution_path"].append("agent_database_error")
- return state
-
- query_result = execute_result.get("data_result")
- state["query_result"] = query_result
- print(f"[DATABASE_AGENT] SQL执行成功,返回 {query_result.get('row_count', 0)} 行数据")
-
- # 步骤3:生成摘要(可通过配置控制,仅在有数据时生成)
- if ENABLE_RESULT_SUMMARY and query_result.get('row_count', 0) > 0:
- print(f"[DATABASE_AGENT] 步骤3:生成摘要")
-
- # 重要:提取原始问题用于摘要生成,避免历史记录循环嵌套
- original_question = self._extract_original_question(question)
- print(f"[DATABASE_AGENT] 原始问题: {original_question}")
-
- summary_result = generate_summary.invoke({
- "question": original_question, # 使用原始问题而不是enhanced_question
- "query_result": query_result,
- "sql": sql
- })
-
- if not summary_result.get("success"):
- print(f"[DATABASE_AGENT] 摘要生成失败: {summary_result.get('message')}")
- # 摘要生成失败不是致命错误,使用默认摘要
- state["summary"] = f"查询执行完成,共返回 {query_result.get('row_count', 0)} 条记录。"
- else:
- state["summary"] = summary_result.get("summary")
- print(f"[DATABASE_AGENT] 摘要生成成功")
- else:
- print(f"[DATABASE_AGENT] 跳过摘要生成(ENABLE_RESULT_SUMMARY={ENABLE_RESULT_SUMMARY},数据行数={query_result.get('row_count', 0)})")
- # 不生成摘要时,不设置summary字段,让格式化响应节点决定如何处理
-
- state["current_step"] = "database_completed"
- state["execution_path"].append("agent_database")
-
- print(f"[DATABASE_AGENT] 数据库查询完成")
- return state
-
- except Exception as e:
- print(f"[ERROR] 数据库Agent异常: {str(e)}")
- import traceback
- print(f"[ERROR] 详细错误信息: {traceback.format_exc()}")
- state["error"] = f"数据库查询失败: {str(e)}"
- state["error_code"] = 500
- state["current_step"] = "database_error"
- state["execution_path"].append("agent_database_error")
- return state
-
- def _agent_chat_node(self, state: AgentState) -> AgentState:
- """聊天Agent节点 - 直接工具调用模式"""
- try:
- print(f"[CHAT_AGENT] 开始处理聊天: {state['question']}")
-
- question = state["question"]
-
- # 构建上下文 - 仅使用真实的对话历史上下文
- # 注意:不要将分类原因传递给LLM,那是系统内部的路由信息
- enable_context_injection = self.config.get("chat_agent", {}).get("enable_context_injection", True)
- context = None
- if enable_context_injection:
- # TODO: 在这里可以添加真实的对话历史上下文
- # 例如从Redis或其他存储中获取最近的对话记录
- # context = get_conversation_history(state.get("session_id"))
- pass
-
- # 直接调用general_chat工具
- print(f"[CHAT_AGENT] 调用general_chat工具")
- chat_result = general_chat.invoke({
- "question": question,
- "context": context
- })
-
- if chat_result.get("success"):
- state["chat_response"] = chat_result.get("response", "")
- print(f"[CHAT_AGENT] 聊天处理成功")
- else:
- # 处理失败,使用备用响应
- state["chat_response"] = chat_result.get("response", "抱歉,我暂时无法处理您的问题。请稍后再试。")
- print(f"[CHAT_AGENT] 聊天处理失败,使用备用响应: {chat_result.get('error')}")
-
- state["current_step"] = "chat_completed"
- state["execution_path"].append("agent_chat")
-
- print(f"[CHAT_AGENT] 聊天处理完成")
- return state
-
- except Exception as e:
- print(f"[ERROR] 聊天Agent异常: {str(e)}")
- import traceback
- print(f"[ERROR] 详细错误信息: {traceback.format_exc()}")
- state["chat_response"] = "抱歉,我暂时无法处理您的问题。请稍后再试,或者尝试询问数据相关的问题。"
- state["current_step"] = "chat_error"
- state["execution_path"].append("agent_chat_error")
- return state
-
- def _format_response_node(self, state: AgentState) -> AgentState:
- """格式化最终响应节点"""
- try:
- print(f"[FORMAT_NODE] 开始格式化响应,问题类型: {state['question_type']}")
-
- state["current_step"] = "completed"
- state["execution_path"].append("format_response")
-
- # 根据问题类型和执行状态格式化响应
- if state.get("error"):
- # 有错误的情况
- state["final_response"] = {
- "success": False,
- "error": state["error"],
- "error_code": state.get("error_code", 500),
- "question_type": state["question_type"],
- "execution_path": state["execution_path"],
- "classification_info": {
- "confidence": state.get("classification_confidence", 0),
- "reason": state.get("classification_reason", ""),
- "method": state.get("classification_method", "")
- }
- }
-
- elif state["question_type"] == "DATABASE":
- # 数据库查询类型
-
- # 处理SQL生成失败的情况
- if not state.get("sql_generation_success", True) and state.get("user_prompt"):
- state["final_response"] = {
- "success": False,
- "response": state["user_prompt"],
- "type": "DATABASE",
- "sql_generation_failed": True,
- "validation_error_type": state.get("validation_error_type"),
- "sql": state.get("sql"),
- "execution_path": state["execution_path"],
- "classification_info": {
- "confidence": state["classification_confidence"],
- "reason": state["classification_reason"],
- "method": state["classification_method"]
- },
- "sql_validation_info": {
- "sql_generation_success": state.get("sql_generation_success", False),
- "sql_validation_success": state.get("sql_validation_success", False),
- "sql_repair_attempted": state.get("sql_repair_attempted", False),
- "sql_repair_success": state.get("sql_repair_success", False)
- }
- }
- elif state.get("chat_response"):
- # SQL生成失败的解释性响应(不受ENABLE_RESULT_SUMMARY配置影响)
- state["final_response"] = {
- "success": True,
- "response": state["chat_response"],
- "type": "DATABASE",
- "sql": state.get("sql"),
- "query_result": state.get("query_result"), # 保持内部字段名不变
- "execution_path": state["execution_path"],
- "classification_info": {
- "confidence": state["classification_confidence"],
- "reason": state["classification_reason"],
- "method": state["classification_method"]
- }
- }
- elif state.get("summary"):
- # 正常的数据库查询结果,有摘要的情况
- # 将summary的值同时赋给response字段(为将来移除summary字段做准备)
- state["final_response"] = {
- "success": True,
- "type": "DATABASE",
- "response": state["summary"], # 新增:将summary的值赋给response
- "sql": state.get("sql"),
- "query_result": state.get("query_result"), # 保持内部字段名不变
- "summary": state["summary"], # 暂时保留summary字段
- "execution_path": state["execution_path"],
- "classification_info": {
- "confidence": state["classification_confidence"],
- "reason": state["classification_reason"],
- "method": state["classification_method"]
- }
- }
- elif state.get("query_result"):
- # 有数据但没有摘要(摘要被配置禁用)
- query_result = state.get("query_result")
- row_count = query_result.get("row_count", 0)
-
- # 构建基本响应,不包含summary字段和response字段
- # 用户应该直接从query_result.columns和query_result.rows获取数据
- state["final_response"] = {
- "success": True,
- "type": "DATABASE",
- "sql": state.get("sql"),
- "query_result": query_result, # 保持内部字段名不变
- "execution_path": state["execution_path"],
- "classification_info": {
- "confidence": state["classification_confidence"],
- "reason": state["classification_reason"],
- "method": state["classification_method"]
- }
- }
- else:
- # 数据库查询失败,没有任何结果
- state["final_response"] = {
- "success": False,
- "error": state.get("error", "数据库查询未完成"),
- "type": "DATABASE",
- "sql": state.get("sql"),
- "execution_path": state["execution_path"]
- }
-
- else:
- # 聊天类型
- state["final_response"] = {
- "success": True,
- "response": state.get("chat_response", ""),
- "type": "CHAT",
- "execution_path": state["execution_path"],
- "classification_info": {
- "confidence": state["classification_confidence"],
- "reason": state["classification_reason"],
- "method": state["classification_method"]
- }
- }
-
- print(f"[FORMAT_NODE] 响应格式化完成")
- return state
-
- except Exception as e:
- print(f"[ERROR] 响应格式化异常: {str(e)}")
- state["final_response"] = {
- "success": False,
- "error": f"响应格式化异常: {str(e)}",
- "error_code": 500,
- "execution_path": state["execution_path"]
- }
- return state
-
- def _route_after_sql_generation(self, state: AgentState) -> Literal["continue_execution", "return_to_user"]:
- """
- SQL生成后的路由决策
-
- 根据SQL生成和验证的结果决定后续流向:
- - SQL生成验证成功 → 继续执行SQL
- - SQL生成验证失败 → 直接返回用户提示
- """
- sql_generation_success = state.get("sql_generation_success", False)
-
- print(f"[ROUTE] SQL生成路由: success={sql_generation_success}")
-
- if sql_generation_success:
- return "continue_execution" # 路由到SQL执行节点
- else:
- return "return_to_user" # 路由到format_response,结束流程
- def _route_after_classification(self, state: AgentState) -> Literal["DATABASE", "CHAT"]:
- """
- 分类后的路由决策
-
- 完全信任QuestionClassifier的决策:
- - DATABASE类型 → 数据库Agent
- - CHAT和UNCERTAIN类型 → 聊天Agent
-
- 这样避免了双重决策的冲突,所有分类逻辑都集中在QuestionClassifier中
- """
- question_type = state["question_type"]
- confidence = state["classification_confidence"]
-
- print(f"[ROUTE] 分类路由: {question_type}, 置信度: {confidence} (完全信任分类器决策)")
-
- if question_type == "DATABASE":
- return "DATABASE"
- else:
- # 将 "CHAT" 和 "UNCERTAIN" 类型都路由到聊天流程
- # 聊天Agent可以处理不确定的情况,并在必要时引导用户提供更多信息
- return "CHAT"
-
- async def process_question(self, question: str, session_id: str = None, context_type: str = None, routing_mode: str = None) -> Dict[str, Any]:
- """
- 统一的问题处理入口
-
- Args:
- question: 用户问题
- session_id: 会话ID
- context_type: 上下文类型 ("DATABASE" 或 "CHAT"),用于渐进式分类
- routing_mode: 路由模式,可选,用于覆盖配置文件设置
-
- Returns:
- Dict包含完整的处理结果
- """
- try:
- print(f"[CITU_AGENT] 开始处理问题: {question}")
- if context_type:
- print(f"[CITU_AGENT] 上下文类型: {context_type}")
- if routing_mode:
- print(f"[CITU_AGENT] 使用指定路由模式: {routing_mode}")
-
- # 动态创建workflow(基于路由模式)
- workflow = self._create_workflow(routing_mode)
-
- # 初始化状态
- initial_state = self._create_initial_state(question, session_id, context_type, routing_mode)
-
- # 执行工作流
- final_state = await workflow.ainvoke(
- initial_state,
- config={
- "configurable": {"session_id": session_id}
- } if session_id else None
- )
-
- # 提取最终结果
- result = final_state["final_response"]
-
- print(f"[CITU_AGENT] 问题处理完成: {result.get('success', False)}")
-
- return result
-
- except Exception as e:
- print(f"[ERROR] Agent执行异常: {str(e)}")
- return {
- "success": False,
- "error": f"Agent系统异常: {str(e)}",
- "error_code": 500,
- "execution_path": ["error"]
- }
-
- def _create_initial_state(self, question: str, session_id: str = None, context_type: str = None, routing_mode: str = None) -> AgentState:
- """创建初始状态 - 支持渐进式分类"""
- # 确定使用的路由模式
- if routing_mode:
- effective_routing_mode = routing_mode
- else:
- try:
- from app_config import QUESTION_ROUTING_MODE
- effective_routing_mode = QUESTION_ROUTING_MODE
- except ImportError:
- effective_routing_mode = "hybrid"
-
- return AgentState(
- # 输入信息
- question=question,
- session_id=session_id,
-
- # 上下文信息
- context_type=context_type,
-
- # 分类结果 (初始值,会在分类节点或直接模式初始化节点中更新)
- question_type="UNCERTAIN",
- classification_confidence=0.0,
- classification_reason="",
- classification_method="",
-
- # 数据库查询流程状态
- sql=None,
- sql_generation_attempts=0,
- query_result=None,
- summary=None,
-
- # SQL验证和修复相关状态
- sql_generation_success=False,
- sql_validation_success=False,
- sql_repair_attempted=False,
- sql_repair_success=False,
- validation_error_type=None,
- user_prompt=None,
-
- # 聊天响应
- chat_response=None,
-
- # 最终输出
- final_response={},
-
- # 错误处理
- error=None,
- error_code=None,
-
- # 流程控制
- current_step="initialized",
- execution_path=["start"],
- retry_count=0,
- max_retries=3,
-
- # 调试信息
- debug_info={},
-
- # 路由模式
- routing_mode=effective_routing_mode
- )
-
- # ==================== SQL验证和修复相关方法 ====================
-
- def _is_sql_validation_enabled(self) -> bool:
- """检查是否启用SQL验证"""
- from agent.config import get_nested_config
- return (get_nested_config(self.config, "sql_validation.enable_syntax_validation", False) or
- get_nested_config(self.config, "sql_validation.enable_forbidden_check", False))
- def _is_auto_repair_enabled(self) -> bool:
- """检查是否启用自动修复"""
- from agent.config import get_nested_config
- return (get_nested_config(self.config, "sql_validation.enable_auto_repair", False) and
- get_nested_config(self.config, "sql_validation.enable_syntax_validation", False))
- async def _validate_sql_with_custom_priority(self, sql: str) -> Dict[str, Any]:
- """
- 按照自定义优先级验证SQL:先禁止词,再语法
-
- Args:
- sql: 要验证的SQL语句
-
- Returns:
- 验证结果字典
- """
- try:
- from agent.config import get_nested_config
-
- # 1. 优先检查禁止词(您要求的优先级)
- if get_nested_config(self.config, "sql_validation.enable_forbidden_check", True):
- forbidden_result = self._check_forbidden_keywords(sql)
- if not forbidden_result.get("valid"):
- return {
- "valid": False,
- "error_type": "forbidden_keywords",
- "error_message": forbidden_result.get("error"),
- "can_repair": False # 禁止词错误不能修复
- }
-
- # 2. 再检查语法(EXPLAIN SQL)
- if get_nested_config(self.config, "sql_validation.enable_syntax_validation", True):
- syntax_result = await self._validate_sql_syntax(sql)
- if not syntax_result.get("valid"):
- return {
- "valid": False,
- "error_type": "syntax_error",
- "error_message": syntax_result.get("error"),
- "can_repair": True # 语法错误可以尝试修复
- }
-
- return {"valid": True}
-
- except Exception as e:
- return {
- "valid": False,
- "error_type": "validation_exception",
- "error_message": str(e),
- "can_repair": False
- }
- def _check_forbidden_keywords(self, sql: str) -> Dict[str, Any]:
- """检查禁止的SQL关键词"""
- try:
- from agent.config import get_nested_config
- forbidden_operations = get_nested_config(
- self.config,
- "sql_validation.forbidden_operations",
- ['UPDATE', 'DELETE', 'DROP', 'ALTER', 'INSERT']
- )
-
- sql_upper = sql.upper().strip()
-
- for operation in forbidden_operations:
- if sql_upper.startswith(operation.upper()):
- return {
- "valid": False,
- "error": f"不允许的操作: {operation}。本系统只支持查询操作(SELECT)。"
- }
-
- return {"valid": True}
-
- except Exception as e:
- return {
- "valid": False,
- "error": f"禁止词检查异常: {str(e)}"
- }
- async def _validate_sql_syntax(self, sql: str) -> Dict[str, Any]:
- """语法验证 - 使用EXPLAIN SQL"""
- try:
- from common.vanna_instance import get_vanna_instance
- import asyncio
-
- vn = get_vanna_instance()
-
- # 构建EXPLAIN查询
- explain_sql = f"EXPLAIN {sql}"
-
- # 异步执行验证
- result = await asyncio.to_thread(vn.run_sql, explain_sql)
-
- if result is not None:
- return {"valid": True}
- else:
- return {
- "valid": False,
- "error": "SQL语法验证失败"
- }
-
- except Exception as e:
- return {
- "valid": False,
- "error": str(e)
- }
- async def _attempt_sql_repair_once(self, sql: str, error_message: str) -> Dict[str, Any]:
- """
- 使用LLM尝试修复SQL - 只修复一次
-
- Args:
- sql: 原始SQL
- error_message: 错误信息
-
- Returns:
- 修复结果字典
- """
- try:
- from common.vanna_instance import get_vanna_instance
- from agent.config import get_nested_config
- import asyncio
-
- vn = get_vanna_instance()
-
- # 构建修复提示词
- repair_prompt = f"""你是一个PostgreSQL SQL专家,请修复以下SQL语句的语法错误。
- 当前数据库类型: PostgreSQL
- 错误信息: {error_message}
- 需要修复的SQL:
- {sql}
- 修复要求:
- 1. 只修复语法错误和表结构错误
- 2. 保持SQL的原始业务逻辑不变
- 3. 使用PostgreSQL标准语法
- 4. 确保修复后的SQL语法正确
- 请直接输出修复后的SQL语句,不要添加其他说明文字。"""
- # 获取超时配置
- timeout = get_nested_config(self.config, "sql_validation.repair_timeout", 60)
-
- # 异步调用LLM修复
- response = await asyncio.wait_for(
- asyncio.to_thread(
- vn.chat_with_llm,
- question=repair_prompt,
- system_prompt="你是一个专业的PostgreSQL SQL专家,专门负责修复SQL语句中的语法错误。"
- ),
- timeout=timeout
- )
-
- if response and response.strip():
- repaired_sql = response.strip()
-
- # 验证修复后的SQL
- validation_result = await self._validate_sql_syntax(repaired_sql)
-
- if validation_result.get("valid"):
- return {
- "success": True,
- "repaired_sql": repaired_sql,
- "error": None
- }
- else:
- return {
- "success": False,
- "repaired_sql": None,
- "error": f"修复后的SQL仍然无效: {validation_result.get('error')}"
- }
- else:
- return {
- "success": False,
- "repaired_sql": None,
- "error": "LLM返回空响应"
- }
-
- except asyncio.TimeoutError:
- return {
- "success": False,
- "repaired_sql": None,
- "error": f"修复超时({get_nested_config(self.config, 'sql_validation.repair_timeout', 60)}秒)"
- }
- except Exception as e:
- return {
- "success": False,
- "repaired_sql": None,
- "error": f"修复异常: {str(e)}"
- }
- # ==================== 原有方法 ====================
-
- def _extract_original_question(self, question: str) -> str:
- """
- 从enhanced_question中提取原始问题
-
- Args:
- question: 可能包含上下文的问题
-
- Returns:
- str: 原始问题
- """
- try:
- # 检查是否为enhanced_question格式
- if "\n[CONTEXT]\n" in question and "\n[CURRENT]\n" in question:
- # 提取[CURRENT]标签后的内容
- current_start = question.find("\n[CURRENT]\n")
- if current_start != -1:
- original_question = question[current_start + len("\n[CURRENT]\n"):].strip()
- return original_question
-
- # 如果不是enhanced_question格式,直接返回原问题
- return question.strip()
-
- except Exception as e:
- print(f"[WARNING] 提取原始问题失败: {str(e)}")
- return question.strip()
- async def health_check(self) -> Dict[str, Any]:
- """健康检查"""
- try:
- # 从配置获取健康检查参数
- from agent.config import get_nested_config
- test_question = get_nested_config(self.config, "health_check.test_question", "你好")
- enable_full_test = get_nested_config(self.config, "health_check.enable_full_test", True)
-
- if enable_full_test:
- # 完整流程测试
- test_result = await self.process_question(test_question, "health_check")
-
- return {
- "status": "healthy" if test_result.get("success") else "degraded",
- "test_result": test_result.get("success", False),
- "workflow_compiled": True, # 动态创建,始终可用
- "tools_count": len(self.tools),
- "agent_reuse_enabled": False,
- "message": "Agent健康检查完成"
- }
- else:
- # 简单检查
- return {
- "status": "healthy",
- "test_result": True,
- "workflow_compiled": True, # 动态创建,始终可用
- "tools_count": len(self.tools),
- "agent_reuse_enabled": False,
- "message": "Agent简单健康检查完成"
- }
-
- except Exception as e:
- return {
- "status": "unhealthy",
- "error": str(e),
- "workflow_compiled": True, # 动态创建,始终可用
- "tools_count": len(self.tools) if hasattr(self, 'tools') else 0,
- "agent_reuse_enabled": False,
- "message": "Agent健康检查失败"
- }
|