12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460 |
- 2025-07-20 00:49:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-20 00:49:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 00:49:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-20 00:49:17 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001CA2C180F80>
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-20 00:49:17 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-20 00:49:17 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-20 00:49:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-20 00:49:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-20 00:49:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 00:49:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001CA2DB41EB0>
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-20 00:49:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-20 00:49:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-20 00:49:20 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-20 00:49:55 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-20 00:49:55 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 00:49:55 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001CA2FEEF650>
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-20 00:49:56 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-20 00:49:56 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-20 00:49:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: 请问哪个服务区的档口数量最多?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析每个服务区关联的路线数量并找出覆盖路线最多的服务区 | similarity: 0.7464
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 哪些服务区只有单一方向的档口? | similarity: 0.7459
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析各服务区关联的路段路线数量TOP10 | similarity: 0.7405
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 每个服务区的营业档口数量(曾经有交易的)? | similarity: 0.7326
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近30天中车流量最高的服务区? | similarity: 0.7325
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 各分公司管辖服务区的档口总数对比如何? | similarity: 0.7275
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - SQL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.7464 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.7459 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.7405 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 4: similarity=0.7326 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 5: similarity=0.7325 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 6: similarity=0.7275 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属... | similarity: 0.649
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的... | similarity: 0.6368
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- cr... | similarity: 0.6357
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线分段与服务区关联表
- -- 描述: 路线分段与服务区关联表,记录路线与服务区的对应... | similarity: 0.6313
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线ID与服务区ID的对应... | similarity: 0.626
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 存储路线段与服务区关联关系
- -- 描述: 存储路线段与服务区关联关系,管理高速线路与... | similarity: 0.6199
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.649 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.6368 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.6357 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.6313 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.626 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.6199 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础... | similarity: 0.6543
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_serv... | similarity: 0.6345
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss... | similarity: 0.6339
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(路线与服务区关联表)
- bss_sect... | similarity: 0.6287
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录... | similarity: 0.627
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(记录高速公路路段路线与服务区的关联关系... | similarity: 0.6263
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6543 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.6345 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.6339 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.6287 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.627 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.6263 ✓
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: 请问哪个服务区的档口数量最多?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:654 - Error SQL Match: 查询所有部门信息 | similarity: 0.2713
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:392 - Error SQL 阈值过滤: 总数=1, 阈值=0.8
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] pgvector.py:410 - Error SQL 过滤结果: 所有 1 条结果都低于阈值 0.8,返回空列表
- 2025-07-20 00:49:58 [WARNING] [vanna.BaseLLMChat] pgvector.py:673 - 向量查询找到了 1 条错误SQL示例,但全部被阈值过滤掉.
- 2025-07-20 00:49:58 [WARNING] [vanna.BaseLLMChat] pgvector.py:674 - 问题: 请问哪个服务区的档口数量最多?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- create table bss_branch (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 数据版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- branch_name varchar(255), -- 档口名称
- branch_no varchar(255), -- 档口编码
- service_area_id varchar(32), -- 服务区ID,外键(关联bss_service_area.id)
- company_id varchar(32), -- 公司ID,外键(关联bss_company.ID)
- classify varchar(256), -- 品类
- product_brand varchar(256), -- 品牌
- category varchar(256), -- 类别
- section_route_id varchar(32), -- 所属路线ID,外键(关联bss_section_route.id)
- direction varchar(256), -- 所在方向
- is_manual_entry integer default 0, -- 是否手工录入
- co_company varchar(256) -- 合作公司名称
- )
- -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的归属关系。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线分段与服务区关联表
- -- 描述: 路线分段与服务区关联表,记录路线与服务区的对应关系
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线ID与服务区ID的对应关系,支持路径规划和资源分配。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 存储路线段与服务区关联关系
- -- 描述: 存储路线段与服务区关联关系,管理高速线路与服务区归属
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区编码,主键,
- primary key (section_route_id, service_area_id)
- )
- ===Additional Context
- ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- 字段列表:
- - id (varchar(32)) - 主键ID [示例: 00904903cae681aab7a494c3e88e5acd]
- - version (integer) - 数据版本号 [示例: 1]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-10-15 09:46:45.010]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-10-15 09:46:45.010]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - branch_name (varchar(255)) - 档口名称 [示例: 于都驿美餐饮南区]
- - branch_no (varchar(255)) - 档口编码(唯一业务标识)[示例: 003585]
- - service_area_id (varchar(32)) - 服务区ID(外键关联bss_service_area.id)[示例: c7e2f26df373e9cb75bd24ddba57f27f]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: ce5e6f553513dad393694e1fa663aaf4]
- - classify (varchar(256)) - 经营品类,枚举型:餐饮、小吃、便利店、整体租赁、其他 [示例: 餐饮]
- - product_brand (varchar(256)) - 品牌名称 [示例: 驿美餐饮]
- - category (varchar(256)) - 经营类别 [示例: 混沌]
- - section_route_id (varchar(32)) - 所属路线ID(外键关联bss_section_route.id)[示例: lvkcuu94d4487c42z7qltsvxcyz0iqu5]
- - direction (varchar(256)) - 所在方向(枚举:北区/南区/西区/东区/两区)[示例: 南区]
- - is_manual_entry (integer) - 是否手工录入(0=系统自动,1=手工录入)[示例: 0]
- - co_company (varchar(256)) - 合作公司名称 [示例: 江西驿美餐饮管理有限责任公司]
- 字段补充说明:
- - service_area_id 外键关联服务区基础信息表(bss_service_area)
- - company_id 外键关联服务区管理公司表(bss_company)
- - section_route_id 外键关联高速线路信息表(bss_section_route)
- - direction 表示档口在服务区内的物理位置分区,为枚举型:北区、南区、西区、东区、两区。
- - is_manual_entry 标识数据来源(系统采集或人工录入)
- - classify 表示经营品类,为枚举型:餐饮、小吃、便利店、整体租赁、其他。
- ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_service_area 表存储高速公路服务区基础信息及版本变更记录,支持服务区全生命周期管理。
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss_service_area 表存储高速公路服务区基础信息(名称、编码)及操作记录,支撑BSS系统服务区全生命周期管理
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理位置坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_section_route_area_link(路线与服务区关联表)
- bss_section_route_area_link 表路线与服务区关联表,记录路线ID与服务区ID的对应关系,支持路径规划和资源分配。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线ID [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区ID [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录高速公路服务区的基础属性,包括服务区编码、名称、方向、公司归属、地理位置、服务类型和状态,是业务分析与服务区定位的核心表。
- 字段列表:
- - id (varchar(32)) - 服务区唯一标识(主键,UUID) [示例: 0271d68ef93de9684b7ad8c7aae600b6]
- - version (integer) - 版本号 [示例: 3]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-05-21 13:26:40.589]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-07-10 15:41:28.795]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区]
- - service_area_no (varchar(255)) - 服务区编码(业务唯一标识)[示例: H0814]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: b1629f07c8d9ac81494fbc1de61f1ea5]
- - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584]
- - service_area_type (varchar(50)) - 服务区类型(枚举:信息化服务区、智能化服务区)[示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态(枚举:开放/关闭/上传数据)[示例: 开放]
- 字段补充说明:
- - id 为主键,使用 UUID 编码,唯一标识每个服务区。
- - company_id 外键,关联服务区管理公司表(bss_company.id)
- - service_position 经纬度格式为"经度,纬度"
- - service_area_type 为枚举字段,包含两个取值:信息化服务区、智能化服务区。
- - 是多个表(bss_branch, bss_car_day_count等)的核心关联实体
- ## bss_section_route_area_link(记录高速公路路段路线与服务区的关联关系)
- bss_section_route_area_link 表记录高速公路路段路线与服务区的关联关系,支撑路线规划与服务区运营管理。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线ID [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区ID [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析每个服务区关联的路线数量并找出覆盖路线最多的服务区
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_area_id AS 服务区ID, COUNT(section_route_id) AS 关联路线数 FROM bss_section_route_area_link GROUP BY service_area_id ORDER BY 关联路线数 DESC LIMIT 1;
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 哪些服务区只有单一方向的档口?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sa.service_area_name, COUNT(DISTINCT b.direction) AS direction_count, STRING_AGG(DISTINCT b.direction, ', ') AS directions FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name HAVING COUNT(DISTINCT b.direction) = 1 ORDER BY sa.service_area_name;
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析各服务区关联的路段路线数量TOP10
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sa.service_area_name AS 服务区名称, COUNT(sr.id) AS 关联路段数 FROM bss_section_route_area_link link JOIN bss_service_area sa ON link.service_area_id = sa.id JOIN bss_section_route sr ON link.section_route_id = sr.id WHERE sa.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 关联路段数 DESC LIMIT 10;
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 每个服务区的营业档口数量(曾经有交易的)?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name, COUNT(DISTINCT branch_no) AS branch_count FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name;
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 最近30天中车流量最高的服务区?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name, SUM(c.customer_count) AS total_cars FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - INTERVAL '30 day' GROUP BY s.service_area_name ORDER BY total_cars DESC NULLS LAST LIMIT 10;
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 各分公司管辖服务区的档口总数对比如何?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT c.company_name, COUNT(DISTINCT b.id) AS total_branches FROM bss_company c JOIN bss_service_area sa ON c.id = sa.company_id JOIN bss_branch b ON sa.id = b.service_area_id WHERE c.delete_ts IS NULL AND sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY c.company_name ORDER BY total_branches DESC NULLS LAST;
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 请问哪个服务区的档口数量最多?
- 2025-07-20 00:49:58 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': 'You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-20 00:49:58 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 2977.0 tokens (approx)
- 2025-07-20 00:49:58 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 00:49:58 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 00:50:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT sa.service_area_name AS 服务区名称, COUNT(b.id) AS 档口数量 FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service...
- 2025-07-20 00:50:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT sa.service_area_name AS 服务区名称, COUNT(b.id) AS 档口数量 FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-20 00:50:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
- SELECT sa.service_area_name AS 服务区名称, COUNT(b.id) AS 档口数量 FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-20 00:50:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:476 - 生成摘要 - 问题: 请问哪个服务区的档口数量最多?
- 2025-07-20 00:50:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:477 - DataFrame 形状: (1, 2)
- 2025-07-20 00:50:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a professional data analysis assistant. The user asked: '请问哪个服务区的档口数量最多?'
- Here is the pandas DataFrame data from the query results:| | 服务区名称 | 档口数量 |
- |---:|:-------------|-----------:|
- | 0 | 南城服务区 | 39 |
- Please think and analyze in the context provided and respond accordingly.
- 2025-07-20 00:50:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: Based on the user's question, please briefly summarize this data. Requirements:
- 1. Provide only a brief summary without adding extra explanations
- 2. If there are numbers in the data, maintain appropriate precision
- Please respond in Chinese.
- 2025-07-20 00:50:01 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 136.75 tokens (approx)
- 2025-07-20 00:50:01 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 00:50:01 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 00:50:02 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:502 - 隐藏thinking内容 - 原始长度: 19, 处理后长度: 19
- 2025-07-20 00:50:02 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:504 - 生成的摘要: 南城服务区的档口数量最多,共有39个。...
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL:
- [CONTEXT]
- User: 请问哪个服务区的档口数量最多?
- Assistant: 南城服务区的档口数量最多,共有39个。
- [CURRENT]
- 请问这个服务区有几个餐饮档口?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 每个服务区的营业档口数量(曾经有交易的)? | similarity: 0.722
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 各分公司管辖服务区的档口总数对比如何? | similarity: 0.7118
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 哪些服务区只有单一方向的档口? | similarity: 0.7021
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析各服务区关联的路段路线数量TOP10 | similarity: 0.6933
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 当前各运营状态下的服务区数量分布情况? | similarity: 0.6761
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 各服务区不同类型车辆数量分布 | similarity: 0.6755
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - SQL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.722 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.7118 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.7021 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 4: similarity=0.6933 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 5: similarity=0.6761 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 6: similarity=0.6755 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属... | similarity: 0.6139
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的... | similarity: 0.5757
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- cr... | similarity: 0.5731
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线分段与服务区关联表
- -- 描述: 路线分段与服务区关联表,记录路线与服务区的对应... | similarity: 0.5698
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区基础信息表
- -- 描述: 记录服务区的基础信息,如编码、名称、公司、经纬度、状... | similarity: 0.568
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线ID与服务区ID的对应... | similarity: 0.5665
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.6139 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5757 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5731 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.5698 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.568 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.5665 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础... | similarity: 0.6332
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_serv... | similarity: 0.5755
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss... | similarity: 0.5722
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(服务区基础信息表)
- bss_service_area 表服务... | similarity: 0.5708
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录... | similarity: 0.5675
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基本信息(名称、编码等))
- bss_ser... | similarity: 0.5625
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6332 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.5755 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.5722 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5708 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5675 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5625 ✓
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题:
- [CONTEXT]
- User: 请问哪个服务区的档口数量最多?
- Assistant: 南城服务区的档口数量最多,共有39个。
- [CURRENT]
- 请问这个服务区有几个餐饮档口?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:654 - Error SQL Match: 查询所有部门信息 | similarity: 0.2673
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:392 - Error SQL 阈值过滤: 总数=1, 阈值=0.8
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] pgvector.py:410 - Error SQL 过滤结果: 所有 1 条结果都低于阈值 0.8,返回空列表
- 2025-07-20 00:51:35 [WARNING] [vanna.BaseLLMChat] pgvector.py:673 - 向量查询找到了 1 条错误SQL示例,但全部被阈值过滤掉.
- 2025-07-20 00:51:35 [WARNING] [vanna.BaseLLMChat] pgvector.py:674 - 问题:
- [CONTEXT]
- User: 请问哪个服务区的档口数量最多?
- Assistant: 南城服务区的档口数量最多,共有39个。
- [CURRENT]
- 请问这个服务区有几个餐饮档口?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- create table bss_branch (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 数据版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- branch_name varchar(255), -- 档口名称
- branch_no varchar(255), -- 档口编码
- service_area_id varchar(32), -- 服务区ID,外键(关联bss_service_area.id)
- company_id varchar(32), -- 公司ID,外键(关联bss_company.ID)
- classify varchar(256), -- 品类
- product_brand varchar(256), -- 品牌
- category varchar(256), -- 类别
- section_route_id varchar(32), -- 所属路线ID,外键(关联bss_section_route.id)
- direction varchar(256), -- 所在方向
- is_manual_entry integer default 0, -- 是否手工录入
- co_company varchar(256) -- 合作公司名称
- )
- -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的归属关系。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线分段与服务区关联表
- -- 描述: 路线分段与服务区关联表,记录路线与服务区的对应关系
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 服务区基础信息表
- -- 描述: 记录服务区的基础信息,如编码、名称、公司、经纬度、状态等,是业务活动的空间节点中心。
- create table bss_service_area (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- service_area_name varchar(255), -- 服务区名称
- service_area_no varchar(255), -- 服务区编码
- company_id varchar(32), -- 公司ID,外键(关联bss_company.id)
- service_position varchar(255), -- 经纬度
- service_area_type varchar(50), -- 服务区类型
- service_state varchar(50), -- 服务区状态
- primary key (id)
- )
- -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线ID与服务区ID的对应关系,支持路径规划和资源分配。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- ===Additional Context
- ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- 字段列表:
- - id (varchar(32)) - 主键ID [示例: 00904903cae681aab7a494c3e88e5acd]
- - version (integer) - 数据版本号 [示例: 1]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-10-15 09:46:45.010]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-10-15 09:46:45.010]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - branch_name (varchar(255)) - 档口名称 [示例: 于都驿美餐饮南区]
- - branch_no (varchar(255)) - 档口编码(唯一业务标识)[示例: 003585]
- - service_area_id (varchar(32)) - 服务区ID(外键关联bss_service_area.id)[示例: c7e2f26df373e9cb75bd24ddba57f27f]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: ce5e6f553513dad393694e1fa663aaf4]
- - classify (varchar(256)) - 经营品类,枚举型:餐饮、小吃、便利店、整体租赁、其他 [示例: 餐饮]
- - product_brand (varchar(256)) - 品牌名称 [示例: 驿美餐饮]
- - category (varchar(256)) - 经营类别 [示例: 混沌]
- - section_route_id (varchar(32)) - 所属路线ID(外键关联bss_section_route.id)[示例: lvkcuu94d4487c42z7qltsvxcyz0iqu5]
- - direction (varchar(256)) - 所在方向(枚举:北区/南区/西区/东区/两区)[示例: 南区]
- - is_manual_entry (integer) - 是否手工录入(0=系统自动,1=手工录入)[示例: 0]
- - co_company (varchar(256)) - 合作公司名称 [示例: 江西驿美餐饮管理有限责任公司]
- 字段补充说明:
- - service_area_id 外键关联服务区基础信息表(bss_service_area)
- - company_id 外键关联服务区管理公司表(bss_company)
- - section_route_id 外键关联高速线路信息表(bss_section_route)
- - direction 表示档口在服务区内的物理位置分区,为枚举型:北区、南区、西区、东区、两区。
- - is_manual_entry 标识数据来源(系统采集或人工录入)
- - classify 表示经营品类,为枚举型:餐饮、小吃、便利店、整体租赁、其他。
- ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_service_area 表存储高速公路服务区基础信息及版本变更记录,支持服务区全生命周期管理。
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss_service_area 表存储高速公路服务区基础信息(名称、编码)及操作记录,支撑BSS系统服务区全生命周期管理
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理位置坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_service_area(服务区基础信息表)
- bss_service_area 表服务区基础信息表,记录服务区名称、编码及操作审计信息
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录高速公路服务区的基础属性,包括服务区编码、名称、方向、公司归属、地理位置、服务类型和状态,是业务分析与服务区定位的核心表。
- 字段列表:
- - id (varchar(32)) - 服务区唯一标识(主键,UUID) [示例: 0271d68ef93de9684b7ad8c7aae600b6]
- - version (integer) - 版本号 [示例: 3]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-05-21 13:26:40.589]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-07-10 15:41:28.795]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区]
- - service_area_no (varchar(255)) - 服务区编码(业务唯一标识)[示例: H0814]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: b1629f07c8d9ac81494fbc1de61f1ea5]
- - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584]
- - service_area_type (varchar(50)) - 服务区类型(枚举:信息化服务区、智能化服务区)[示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态(枚举:开放/关闭/上传数据)[示例: 开放]
- 字段补充说明:
- - id 为主键,使用 UUID 编码,唯一标识每个服务区。
- - company_id 外键,关联服务区管理公司表(bss_company.id)
- - service_position 经纬度格式为"经度,纬度"
- - service_area_type 为枚举字段,包含两个取值:信息化服务区、智能化服务区。
- - 是多个表(bss_branch, bss_car_day_count等)的核心关联实体
- ## bss_service_area(存储高速公路服务区基本信息(名称、编码等))
- bss_service_area 表存储高速公路服务区基本信息(名称、编码等),支持服务区运营管理。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 最后更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 最后更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除操作人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理位置坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 每个服务区的营业档口数量(曾经有交易的)?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name, COUNT(DISTINCT branch_no) AS branch_count FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name;
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 各分公司管辖服务区的档口总数对比如何?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT c.company_name, COUNT(DISTINCT b.id) AS total_branches FROM bss_company c JOIN bss_service_area sa ON c.id = sa.company_id JOIN bss_branch b ON sa.id = b.service_area_id WHERE c.delete_ts IS NULL AND sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY c.company_name ORDER BY total_branches DESC NULLS LAST;
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 哪些服务区只有单一方向的档口?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sa.service_area_name, COUNT(DISTINCT b.direction) AS direction_count, STRING_AGG(DISTINCT b.direction, ', ') AS directions FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name HAVING COUNT(DISTINCT b.direction) = 1 ORDER BY sa.service_area_name;
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析各服务区关联的路段路线数量TOP10
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sa.service_area_name AS 服务区名称, COUNT(sr.id) AS 关联路段数 FROM bss_section_route_area_link link JOIN bss_service_area sa ON link.service_area_id = sa.id JOIN bss_section_route sr ON link.section_route_id = sr.id WHERE sa.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 关联路段数 DESC LIMIT 10;
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 当前各运营状态下的服务区数量分布情况?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_state AS 运营状态, COUNT(*) AS 数量 FROM bss_service_area WHERE delete_ts IS NULL GROUP BY service_state ORDER BY 数量 DESC;
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 各服务区不同类型车辆数量分布
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT b.service_area_name AS 服务区名称, a.car_type AS 车辆类型, SUM(a.customer_count) AS 车辆总数 FROM bss_car_day_count a JOIN bss_service_area b ON a.service_area_id = b.id AND b.delete_ts IS NULL GROUP BY b.service_area_name, a.car_type ORDER BY 服务区名称, 车辆总数 DESC;
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content:
- [CONTEXT]
- User: 请问哪个服务区的档口数量最多?
- Assistant: 南城服务区的档口数量最多,共有39个。
- [CURRENT]
- 请问这个服务区有几个餐饮档口?
- 2025-07-20 00:51:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': 'You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-20 00:51:35 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 3469.25 tokens (approx)
- 2025-07-20 00:51:35 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 00:51:35 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 00:51:39 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT COUNT(*) AS 餐饮档口数量 FROM bss_branch WHERE service_area_id = (SELECT id FROM bss_service_area WHERE service_area_name = '南城服务区') AND classify = '餐饮' AND delete_ts IS NULL;
- 2025-07-20 00:51:39 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT COUNT(*) AS 餐饮档口数量 FROM bss_branch WHERE service_area_id = (SELECT id FROM bss_service_area WHERE service_area_name = '南城服务区') AND classify = '餐饮' AND delete_ts IS NULL;
- 2025-07-20 00:51:39 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
- SELECT COUNT(*) AS 餐饮档口数量 FROM bss_branch WHERE service_area_id = (SELECT id FROM bss_service_area WHERE service_area_name = '南城服务区') AND classify = '餐饮' AND delete_ts IS NULL;
- 2025-07-20 00:51:39 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:476 - 生成摘要 - 问题: 请问这个服务区有几个餐饮档口?
- 2025-07-20 00:51:39 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:477 - DataFrame 形状: (1, 1)
- 2025-07-20 00:51:39 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a professional data analysis assistant. The user asked: '请问这个服务区有几个餐饮档口?'
- Here is the pandas DataFrame data from the query results:| | 餐饮档口数量 |
- |---:|---------------:|
- | 0 | 6 |
- Please think and analyze in the context provided and respond accordingly.
- 2025-07-20 00:51:39 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: Based on the user's question, please briefly summarize this data. Requirements:
- 1. Provide only a brief summary without adding extra explanations
- 2. If there are numbers in the data, maintain appropriate precision
- Please respond in Chinese.
- 2025-07-20 00:51:39 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 130.5 tokens (approx)
- 2025-07-20 00:51:39 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 00:51:39 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 00:51:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:502 - 隐藏thinking内容 - 原始长度: 14, 处理后长度: 14
- 2025-07-20 00:51:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:504 - 生成的摘要: 这个服务区共有6个餐饮档口。...
- 2025-07-20 00:53:21 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content:
- 你是Citu智能数据问答平台的AI助手,为用户提供全面的帮助和支持。
- 你的职责包括:
- 1. 回答关于平台功能和使用方法的问题
- 2. 解释数据分析相关的概念和术语
- 3. 提供操作指导和建议
- 4. 进行友好的日常对话
- 5. 回答用户的各类知识问题和常识咨询
- 回答原则:
- - 保持友好、专业、热情的语调
- - 提供准确、有用的信息
- - 对于通用知识问题,尽量给出准确回答
- - 如果不确定某个问题,诚实地表达不确定性
- - 适时鼓励用户尝试数据查询功能
- - 回答要简洁明了,避免过于冗长
- - 保持中文回答,语言自然流畅
- - 以帮助用户为目标,不要过度限制回答范围
- 2025-07-20 00:53:21 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content:
- [CONTEXT]
- User: 请问哪个服务区的档口数量最多?
- Assistant: 南城服务区的档口数量最多,共有39个。
- User: 请问这个服务区有几个餐饮档口?
- Assistant: 这个服务区共有6个餐饮档口。
- [CURRENT]
- 请问中国的CBA联赛赛季在哪几个月?
- 2025-07-20 00:53:21 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 105.0 tokens (approx)
- 2025-07-20 00:53:21 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 00:53:21 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 00:53:25 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:399 - chat_with_llm隐藏thinking内容 - 原始长度: 90, 处理后长度: 90
- 2025-07-20 01:12:13 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL:
- [CONTEXT]
- User: 请问这个服务区有几个餐饮档口?
- Assistant: 这个服务区共有6个餐饮档口。
- User: 请问中国的CBA联赛赛季在哪几个月?
- Assistant: CBA(中国男子篮球职业联赛)通常从每年的10月开始,持续到次年的4月或5月。常规赛一般在10月至次年1月进行,随后是季后赛,可能延续到4月或5月,具体时间会根据赛季安排略有调整。
- [CURRENT]
- 请问荔枝通常是几月份上市
- 2025-07-20 01:12:14 [DEBUG] [vanna.EmbeddingFunction] embedding_function.py:169 - 成功生成embedding向量,维度: 1024
- 2025-07-20 01:12:15 [DEBUG] [vanna.EmbeddingFunction] embedding_function.py:169 - 成功生成embedding向量,维度: 1024
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 每个服务区的营业档口数量(曾经有交易的)? | similarity: 0.5485
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 计算各服务区行吧支付方式的月均交易次数 | similarity: 0.5436
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 哪些服务区受季节性影响最大? | similarity: 0.5435
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计2023年春节期间各服务区节假日营收占Q1季度总营收比例 | similarity: 0.5363
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年6月1日庐山服务区各档口订单数排名 | similarity: 0.5361
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析服务区关联路段的创建时间分布情况 | similarity: 0.5287
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 0, 强制保留: 3)
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.5485 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.5436 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.5435 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属... | similarity: 0.4857
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 档口日营业数据表
- -- 描述: 记录每天每个档口的营业情况,包含微信、支付宝、现金、... | similarity: 0.472
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区基础信息表
- -- 描述: 记录服务区的基础信息,如编码、名称、公司、经纬度、状... | similarity: 0.4642
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- cr... | similarity: 0.4573
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的... | similarity: 0.4566
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 记录各服务区每日营业统计数据
- -- 描述: 记录各服务区每日营业统计数据,支持运营分... | similarity: 0.4547
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - DDL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 0, 强制保留: 3)
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.4857 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.472 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.4642 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础... | similarity: 0.506
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(服务区基础信息表)
- bss_service_area 表服务... | similarity: 0.4792
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_serv... | similarity: 0.479
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录... | similarity: 0.4752
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss... | similarity: 0.4732
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基本信息(名称、编码等))
- bss_ser... | similarity: 0.4689
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - DOC 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 1, 强制保留: 2)
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.506 ✓
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.4792 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.479 ✗
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题:
- [CONTEXT]
- User: 请问这个服务区有几个餐饮档口?
- Assistant: 这个服务区共有6个餐饮档口。
- User: 请问中国的CBA联赛赛季在哪几个月?
- Assistant: CBA(中国男子篮球职业联赛)通常从每年的10月开始,持续到次年的4月或5月。常规赛一般在10月至次年1月进行,随后是季后赛,可能延续到4月或5月,具体时间会根据赛季安排略有调整。
- [CURRENT]
- 请问荔枝通常是几月份上市
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:654 - Error SQL Match: 查询所有部门信息 | similarity: 0.2301
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:392 - Error SQL 阈值过滤: 总数=1, 阈值=0.8
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] pgvector.py:410 - Error SQL 过滤结果: 所有 1 条结果都低于阈值 0.8,返回空列表
- 2025-07-20 01:12:15 [WARNING] [vanna.BaseLLMChat] pgvector.py:673 - 向量查询找到了 1 条错误SQL示例,但全部被阈值过滤掉.
- 2025-07-20 01:12:15 [WARNING] [vanna.BaseLLMChat] pgvector.py:674 - 问题:
- [CONTEXT]
- User: 请问这个服务区有几个餐饮档口?
- Assistant: 这个服务区共有6个餐饮档口。
- User: 请问中国的CBA联赛赛季在哪几个月?
- Assistant: CBA(中国男子篮球职业联赛)通常从每年的10月开始,持续到次年的4月或5月。常规赛一般在10月至次年1月进行,随后是季后赛,可能延续到4月或5月,具体时间会根据赛季安排略有调整。
- [CURRENT]
- 请问荔枝通常是几月份上市
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- create table bss_branch (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 数据版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- branch_name varchar(255), -- 档口名称
- branch_no varchar(255), -- 档口编码
- service_area_id varchar(32), -- 服务区ID,外键(关联bss_service_area.id)
- company_id varchar(32), -- 公司ID,外键(关联bss_company.ID)
- classify varchar(256), -- 品类
- product_brand varchar(256), -- 品牌
- category varchar(256), -- 类别
- section_route_id varchar(32), -- 所属路线ID,外键(关联bss_section_route.id)
- direction varchar(256), -- 所在方向
- is_manual_entry integer default 0, -- 是否手工录入
- co_company varchar(256) -- 合作公司名称
- )
- -- 中文名: 档口日营业数据表
- -- 描述: 记录每天每个档口的营业情况,包含微信、支付宝、现金、金豆等支付方式的金额与订单数,是核心交易数据表。
- create table bss_business_day_data (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 数据版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- oper_date date, -- 统计日期
- service_no varchar(255), -- 服务区编码
- service_name varchar(255), -- 服务区名称
- branch_no varchar(255), -- 档口编码
- branch_name varchar(255), -- 档口名称
- wx numeric(19,4), -- 微信支付金额
- wx_order integer, -- 微信支付订单数量
- zfb numeric(19,4), -- 支付宝支付金额
- zf_order integer, -- 支付宝支付订单数量
- rmb numeric(19,4), -- 现金支付金额
- rmb_order integer, -- 现金支付订单数量
- xs numeric(19,4), -- 行吧支付金额
- xs_order integer, -- 行吧支付订单数量
- jd numeric(19,4), -- 金豆支付金额
- jd_order integer, -- 金豆支付订单数量
- order_sum integer, -- 订单总数
- pay_sum numeric(19,4), -- 支付总金额
- source_type integer, -- 数据来源类型ID
- primary key (id)
- )
- -- 中文名: 服务区基础信息表
- -- 描述: 记录服务区的基础信息,如编码、名称、公司、经纬度、状态等,是业务活动的空间节点中心。
- create table bss_service_area (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- service_area_name varchar(255), -- 服务区名称
- service_area_no varchar(255), -- 服务区编码
- company_id varchar(32), -- 公司ID,外键(关联bss_company.id)
- service_position varchar(255), -- 经纬度
- service_area_type varchar(50), -- 服务区类型
- service_state varchar(50), -- 服务区状态
- primary key (id)
- )
- ===Additional Context
- ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- 字段列表:
- - id (varchar(32)) - 主键ID [示例: 00904903cae681aab7a494c3e88e5acd]
- - version (integer) - 数据版本号 [示例: 1]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-10-15 09:46:45.010]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-10-15 09:46:45.010]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - branch_name (varchar(255)) - 档口名称 [示例: 于都驿美餐饮南区]
- - branch_no (varchar(255)) - 档口编码(唯一业务标识)[示例: 003585]
- - service_area_id (varchar(32)) - 服务区ID(外键关联bss_service_area.id)[示例: c7e2f26df373e9cb75bd24ddba57f27f]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: ce5e6f553513dad393694e1fa663aaf4]
- - classify (varchar(256)) - 经营品类,枚举型:餐饮、小吃、便利店、整体租赁、其他 [示例: 餐饮]
- - product_brand (varchar(256)) - 品牌名称 [示例: 驿美餐饮]
- - category (varchar(256)) - 经营类别 [示例: 混沌]
- - section_route_id (varchar(32)) - 所属路线ID(外键关联bss_section_route.id)[示例: lvkcuu94d4487c42z7qltsvxcyz0iqu5]
- - direction (varchar(256)) - 所在方向(枚举:北区/南区/西区/东区/两区)[示例: 南区]
- - is_manual_entry (integer) - 是否手工录入(0=系统自动,1=手工录入)[示例: 0]
- - co_company (varchar(256)) - 合作公司名称 [示例: 江西驿美餐饮管理有限责任公司]
- 字段补充说明:
- - service_area_id 外键关联服务区基础信息表(bss_service_area)
- - company_id 外键关联服务区管理公司表(bss_company)
- - section_route_id 外键关联高速线路信息表(bss_section_route)
- - direction 表示档口在服务区内的物理位置分区,为枚举型:北区、南区、西区、东区、两区。
- - is_manual_entry 标识数据来源(系统采集或人工录入)
- - classify 表示经营品类,为枚举型:餐饮、小吃、便利店、整体租赁、其他。
- ## bss_service_area(服务区基础信息表)
- bss_service_area 表服务区基础信息表,记录服务区名称、编码及操作审计信息
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_service_area 表存储高速公路服务区基础信息及版本变更记录,支持服务区全生命周期管理。
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 每个服务区的营业档口数量(曾经有交易的)?
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name, COUNT(DISTINCT branch_no) AS branch_count FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name;
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 计算各服务区行吧支付方式的月均交易次数
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name AS 服务区名称, EXTRACT(MONTH FROM oper_date) AS 月份, AVG(xs_order) AS 月均交易次数 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY 服务区名称, 月份 ORDER BY 服务区名称, 月份;
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 哪些服务区受季节性影响最大?
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: WITH monthly_service_revenue AS (SELECT service_name, EXTRACT(MONTH FROM oper_date) AS month, SUM(pay_sum) AS monthly_revenue FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name, EXTRACT(MONTH FROM oper_date)), service_seasonality AS (SELECT service_name, MAX(monthly_revenue) AS max_monthly, MIN(monthly_revenue) AS min_monthly, ROUND((MAX(monthly_revenue) - MIN(monthly_revenue)) * 100.0 / MIN(monthly_revenue), 2) AS seasonality_index FROM monthly_service_revenue GROUP BY service_name HAVING MIN(monthly_revenue) > 0) SELECT service_name, max_monthly, min_monthly, seasonality_index FROM service_seasonality ORDER BY seasonality_index DESC NULLS LAST LIMIT 10;
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content:
- [CONTEXT]
- User: 请问这个服务区有几个餐饮档口?
- Assistant: 这个服务区共有6个餐饮档口。
- User: 请问中国的CBA联赛赛季在哪几个月?
- Assistant: CBA(中国男子篮球职业联赛)通常从每年的10月开始,持续到次年的4月或5月。常规赛一般在10月至次年1月进行,随后是季后赛,可能延续到4月或5月,具体时间会根据赛季安排略有调整。
- [CURRENT]
- 请问荔枝通常是几月份上市
- 2025-07-20 01:12:15 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-20 01:12:15 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 2561.75 tokens (approx)
- 2025-07-20 01:12:15 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 01:12:15 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 01:12:17 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: 荔枝通常在每年的5月至7月期间上市,具体时间取决于产地和当年的气候条件。例如,广东、广西等主要产区的荔枝一般在6月达到上市高峰。
- 2025-07-20 01:12:17 [WARNING] [vanna.BaseLLMChat] base_llm_chat.py:311 - 返回内容不像有效SQL: 荔枝通常在每年的5月至7月期间上市,具体时间取决于产地和当年的气候条件。例如,广东、广西等主要产区的荔枝一般在6月达到上市高峰。
- 2025-07-20 01:12:17 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:316 - 隐藏thinking内容 - SQL生成非有效SQL内容
- 2025-07-20 01:57:09 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-20 01:57:09 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 01:57:09 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-20 01:57:09 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000160F224B950>
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-20 01:57:09 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-20 01:57:09 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-20 01:57:10 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-20 01:57:10 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-20 01:57:10 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 01:57:10 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000160F242E090>
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-20 01:57:10 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-20 01:57:10 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-20 01:57:12 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-20 01:57:35 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-20 01:57:35 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 01:57:35 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000160F4774D40>
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-20 01:57:35 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-20 01:57:35 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-20 01:57:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: 请问哪个服务区的档口数量最多?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析每个服务区关联的路线数量并找出覆盖路线最多的服务区 | similarity: 0.7464
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 哪些服务区只有单一方向的档口? | similarity: 0.7459
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析各服务区关联的路段路线数量TOP10 | similarity: 0.7405
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 每个服务区的营业档口数量(曾经有交易的)? | similarity: 0.7326
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近30天中车流量最高的服务区? | similarity: 0.7325
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 各分公司管辖服务区的档口总数对比如何? | similarity: 0.7275
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - SQL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.7464 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.7459 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.7405 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 4: similarity=0.7326 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 5: similarity=0.7325 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 6: similarity=0.7275 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属... | similarity: 0.649
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的... | similarity: 0.6368
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- cr... | similarity: 0.6357
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线分段与服务区关联表
- -- 描述: 路线分段与服务区关联表,记录路线与服务区的对应... | similarity: 0.6313
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线ID与服务区ID的对应... | similarity: 0.626
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 存储路线段与服务区关联关系
- -- 描述: 存储路线段与服务区关联关系,管理高速线路与... | similarity: 0.6199
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.649 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.6368 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.6357 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.6313 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.626 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.6199 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础... | similarity: 0.6543
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_serv... | similarity: 0.6345
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss... | similarity: 0.6339
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(路线与服务区关联表)
- bss_sect... | similarity: 0.6287
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录... | similarity: 0.627
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(记录高速公路路段路线与服务区的关联关系... | similarity: 0.6263
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6543 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.6345 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.6339 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.6287 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.627 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.6263 ✓
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: 请问哪个服务区的档口数量最多?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:654 - Error SQL Match: 查询所有部门信息 | similarity: 0.2713
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:392 - Error SQL 阈值过滤: 总数=1, 阈值=0.8
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] pgvector.py:410 - Error SQL 过滤结果: 所有 1 条结果都低于阈值 0.8,返回空列表
- 2025-07-20 01:57:37 [WARNING] [vanna.BaseLLMChat] pgvector.py:673 - 向量查询找到了 1 条错误SQL示例,但全部被阈值过滤掉.
- 2025-07-20 01:57:37 [WARNING] [vanna.BaseLLMChat] pgvector.py:674 - 问题: 请问哪个服务区的档口数量最多?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 档口基础信息表
- -- 描述: 存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- create table bss_branch (
- id varchar(32) not null, -- 主键ID
- version integer not null, -- 数据版本号
- create_ts timestamp(3), -- 创建时间
- created_by varchar(50), -- 创建人
- update_ts timestamp(3), -- 更新时间
- updated_by varchar(50), -- 更新人
- delete_ts timestamp(3), -- 删除时间
- deleted_by varchar(50), -- 删除人
- branch_name varchar(255), -- 档口名称
- branch_no varchar(255), -- 档口编码
- service_area_id varchar(32), -- 服务区ID,外键(关联bss_service_area.id)
- company_id varchar(32), -- 公司ID,外键(关联bss_company.ID)
- classify varchar(256), -- 品类
- product_brand varchar(256), -- 品牌
- category varchar(256), -- 类别
- section_route_id varchar(32), -- 所属路线ID,外键(关联bss_section_route.id)
- direction varchar(256), -- 所在方向
- is_manual_entry integer default 0, -- 是否手工录入
- co_company varchar(256) -- 合作公司名称
- )
- -- 中文名: 路段路线与服务区关联表
- -- 描述: 路段路线与服务区关联表,维护路线与服务区之间的归属关系。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线经过的服务区信息
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线分段与服务区关联表
- -- 描述: 路线分段与服务区关联表,记录路线与服务区的对应关系
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 路线与服务区关联表
- -- 描述: 路线与服务区关联表,记录路线ID与服务区ID的对应关系,支持路径规划和资源分配。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区ID,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 存储路线段与服务区关联关系
- -- 描述: 存储路线段与服务区关联关系,管理高速线路与服务区归属
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线ID,主键,
- service_area_id varchar(32) not null -- 服务区编码,主键,
- primary key (section_route_id, service_area_id)
- )
- ===Additional Context
- ## bss_branch(档口基础信息表)
- bss_branch 表存储服务区内的档口(商铺)基础信息,如名称、编码、所属服务区、所属公司、品类、品牌等,是商业数据分析的基础实体表。
- 字段列表:
- - id (varchar(32)) - 主键ID [示例: 00904903cae681aab7a494c3e88e5acd]
- - version (integer) - 数据版本号 [示例: 1]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-10-15 09:46:45.010]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-10-15 09:46:45.010]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - branch_name (varchar(255)) - 档口名称 [示例: 于都驿美餐饮南区]
- - branch_no (varchar(255)) - 档口编码(唯一业务标识)[示例: 003585]
- - service_area_id (varchar(32)) - 服务区ID(外键关联bss_service_area.id)[示例: c7e2f26df373e9cb75bd24ddba57f27f]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: ce5e6f553513dad393694e1fa663aaf4]
- - classify (varchar(256)) - 经营品类,枚举型:餐饮、小吃、便利店、整体租赁、其他 [示例: 餐饮]
- - product_brand (varchar(256)) - 品牌名称 [示例: 驿美餐饮]
- - category (varchar(256)) - 经营类别 [示例: 混沌]
- - section_route_id (varchar(32)) - 所属路线ID(外键关联bss_section_route.id)[示例: lvkcuu94d4487c42z7qltsvxcyz0iqu5]
- - direction (varchar(256)) - 所在方向(枚举:北区/南区/西区/东区/两区)[示例: 南区]
- - is_manual_entry (integer) - 是否手工录入(0=系统自动,1=手工录入)[示例: 0]
- - co_company (varchar(256)) - 合作公司名称 [示例: 江西驿美餐饮管理有限责任公司]
- 字段补充说明:
- - service_area_id 外键关联服务区基础信息表(bss_service_area)
- - company_id 外键关联服务区管理公司表(bss_company)
- - section_route_id 外键关联高速线路信息表(bss_section_route)
- - direction 表示档口在服务区内的物理位置分区,为枚举型:北区、南区、西区、东区、两区。
- - is_manual_entry 标识数据来源(系统采集或人工录入)
- - classify 表示经营品类,为枚举型:餐饮、小吃、便利店、整体租赁、其他。
- ## bss_service_area(存储高速公路服务区基础信息及版本变更记录)
- bss_service_area 表存储高速公路服务区基础信息及版本变更记录,支持服务区全生命周期管理。
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_service_area(存储高速公路服务区基础信息(名称、编码)及操作记录)
- bss_service_area 表存储高速公路服务区基础信息(名称、编码)及操作记录,支撑BSS系统服务区全生命周期管理
- 字段列表:
- - id (varchar(32)) - 主键标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 地理位置坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_section_route_area_link(路线与服务区关联表)
- bss_section_route_area_link 表路线与服务区关联表,记录路线ID与服务区ID的对应关系,支持路径规划和资源分配。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线ID [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区ID [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ## bss_service_area(服务区基础信息表)
- bss_service_area 表记录高速公路服务区的基础属性,包括服务区编码、名称、方向、公司归属、地理位置、服务类型和状态,是业务分析与服务区定位的核心表。
- 字段列表:
- - id (varchar(32)) - 服务区唯一标识(主键,UUID) [示例: 0271d68ef93de9684b7ad8c7aae600b6]
- - version (integer) - 版本号 [示例: 3]
- - create_ts (timestamp(3)) - 创建时间 [示例: 2021-05-21 13:26:40.589]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp(3)) - 更新时间 [示例: 2021-07-10 15:41:28.795]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp(3)) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区]
- - service_area_no (varchar(255)) - 服务区编码(业务唯一标识)[示例: H0814]
- - company_id (varchar(32)) - 公司ID(外键关联bss_company.id)[示例: b1629f07c8d9ac81494fbc1de61f1ea5]
- - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584]
- - service_area_type (varchar(50)) - 服务区类型(枚举:信息化服务区、智能化服务区)[示例: 信息化服务区]
- - service_state (varchar(50)) - 服务区状态(枚举:开放/关闭/上传数据)[示例: 开放]
- 字段补充说明:
- - id 为主键,使用 UUID 编码,唯一标识每个服务区。
- - company_id 外键,关联服务区管理公司表(bss_company.id)
- - service_position 经纬度格式为"经度,纬度"
- - service_area_type 为枚举字段,包含两个取值:信息化服务区、智能化服务区。
- - 是多个表(bss_branch, bss_car_day_count等)的核心关联实体
- ## bss_section_route_area_link(记录高速公路路段路线与服务区的关联关系)
- bss_section_route_area_link 表记录高速公路路段路线与服务区的关联关系,支撑路线规划与服务区运营管理。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线ID [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区ID [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析每个服务区关联的路线数量并找出覆盖路线最多的服务区
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_area_id AS 服务区ID, COUNT(section_route_id) AS 关联路线数 FROM bss_section_route_area_link GROUP BY service_area_id ORDER BY 关联路线数 DESC LIMIT 1;
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 哪些服务区只有单一方向的档口?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sa.service_area_name, COUNT(DISTINCT b.direction) AS direction_count, STRING_AGG(DISTINCT b.direction, ', ') AS directions FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name HAVING COUNT(DISTINCT b.direction) = 1 ORDER BY sa.service_area_name;
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析各服务区关联的路段路线数量TOP10
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sa.service_area_name AS 服务区名称, COUNT(sr.id) AS 关联路段数 FROM bss_section_route_area_link link JOIN bss_service_area sa ON link.service_area_id = sa.id JOIN bss_section_route sr ON link.section_route_id = sr.id WHERE sa.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 关联路段数 DESC LIMIT 10;
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 每个服务区的营业档口数量(曾经有交易的)?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name, COUNT(DISTINCT branch_no) AS branch_count FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name;
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 最近30天中车流量最高的服务区?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name, SUM(c.customer_count) AS total_cars FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - INTERVAL '30 day' GROUP BY s.service_area_name ORDER BY total_cars DESC NULLS LAST LIMIT 10;
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 各分公司管辖服务区的档口总数对比如何?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT c.company_name, COUNT(DISTINCT b.id) AS total_branches FROM bss_company c JOIN bss_service_area sa ON c.id = sa.company_id JOIN bss_branch b ON sa.id = b.service_area_id WHERE c.delete_ts IS NULL AND sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY c.company_name ORDER BY total_branches DESC NULLS LAST;
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 请问哪个服务区的档口数量最多?
- 2025-07-20 01:57:37 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': 'You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-20 01:57:37 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 2977.0 tokens (approx)
- 2025-07-20 01:57:37 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 01:57:37 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 01:57:41 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT sa.service_area_name AS 服务区名称, COUNT(b.id) AS 档口数量 FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service...
- 2025-07-20 01:57:41 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT sa.service_area_name AS 服务区名称, COUNT(b.id) AS 档口数量 FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-20 01:57:41 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
- SELECT sa.service_area_name AS 服务区名称, COUNT(b.id) AS 档口数量 FROM bss_service_area sa JOIN bss_branch b ON sa.id = b.service_area_id WHERE sa.delete_ts IS NULL AND b.delete_ts IS NULL GROUP BY sa.service_area_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-20 01:57:41 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:476 - 生成摘要 - 问题: 请问哪个服务区的档口数量最多?
- 2025-07-20 01:57:41 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:477 - DataFrame 形状: (1, 2)
- 2025-07-20 01:57:41 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a professional data analysis assistant. The user asked: '请问哪个服务区的档口数量最多?'
- Here is the pandas DataFrame data from the query results:| | 服务区名称 | 档口数量 |
- |---:|:-------------|-----------:|
- | 0 | 南城服务区 | 39 |
- Please think and analyze in the context provided and respond accordingly.
- 2025-07-20 01:57:41 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: Based on the user's question, please briefly summarize this data. Requirements:
- 1. Provide only a brief summary without adding extra explanations
- 2. If there are numbers in the data, maintain appropriate precision
- Please respond in Chinese.
- 2025-07-20 01:57:41 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 136.75 tokens (approx)
- 2025-07-20 01:57:41 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-20 01:57:41 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-20 01:57:42 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:502 - 隐藏thinking内容 - 原始长度: 19, 处理后长度: 19
- 2025-07-20 01:57:42 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:504 - 生成的摘要: 南城服务区的档口数量最多,共有39个。...
- 2025-07-20 01:58:41 [DEBUG] [vanna.test_vanna] <string>:15 - 测试vanna模块日志 - 时间滚动配置
|