1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486 |
- 2025-07-22 01:03:06 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 01:03:06 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 01:03:06 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 01:03:07 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000022E4EDBB830>
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 01:03:07 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000022E4F300350>
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 01:03:08 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 01:03:09 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 11:33:44 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 11:33:44 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:33:44 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 11:33:44 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001F8D8D51D90>
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 11:33:44 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001F8D97D3230>
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 11:33:46 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 11:33:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 11:53:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 11:53:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:53:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 11:53:46 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000024333E01DC0>
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 11:53:46 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000024335C330B0>
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 11:53:47 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 11:53:49 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 11:56:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 11:56:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:56:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 11:56:59 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000281E9462A20>
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 11:56:59 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000281E9B23080>
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 11:57:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 11:57:02 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 12:08:43 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 12:08:43 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:08:43 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 12:08:43 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000002198FF31D60>
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 12:08:43 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000021991D13170>
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 12:08:45 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 12:08:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 12:26:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 12:26:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:26:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 12:26:17 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000025BB4681D60>
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 12:26:17 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000025BB5F38050>
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 12:26:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 12:26:20 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 13:24:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 13:24:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:24:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 13:24:45 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001C7F90D1D30>
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 13:24:45 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001C7FAAF3080>
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 13:24:46 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 13:24:48 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 13:32:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 13:32:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:32:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 13:32:18 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001438F619A00>
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 13:32:18 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001438FDA3080>
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 13:32:20 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 13:32:21 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 17:38:36 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 17:38:36 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 17:38:36 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 17:38:36 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000023E05F45FA0>
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 17:38:36 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000023E07CF30B0>
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 17:38:38 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 17:38:39 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 20:45:56 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
- 2025-07-22 20:45:56 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 20:45:56 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000023E09531AF0>
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
- 2025-07-22 20:45:56 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
- 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
- 2025-07-22 20:45:57 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: 请问系统中哪个服务区档口最多?
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近一周哪个服务区总车流量最高?取前5名。 | similarity: 0.6381
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。 | similarity: 0.6209
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 找出2023年4月平均每日订单数最高的服务区TOP3? | similarity: 0.6178
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 昨日车流量最低的服务区是哪一个? | similarity: 0.6156
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月订单数环比增长最快的服务区(相比3月)? | similarity: 0.6115
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月1日各服务区总收入排名前5的明细(包含订单总数)? | similarity: 0.6092
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 0, 强制保留: 3)
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.6381 ✗
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.6209 ✗
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.6178 ✗
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日经营数据统计表
- -- 描述: 高速公路服务区每日经营数据统计表,记... | similarity: 0.5484
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路路线与服务区关联表
- -- 描述: 高速公路路线与服务区关联表,用于管理各路段... | similarity: 0.5339
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区信息映射表
- -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与... | similarity: 0.5318
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区基础信息表
- -- 描述: 高速公路服务区基础信息表,存储服务区名称、编... | similarity: 0.5285
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线信息表
- -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速... | similarity: 0.5115
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日车辆流量统计表
- -- 描述: 高速公路服务区每日车辆流量统计表,记... | similarity: 0.4766
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 5 条, 过滤掉 1 条 (全部满足阈值)
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.5484 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5339 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5318 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.5285 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.5115 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area_mapper(服务区信息映射表)
- bss_service_a... | similarity: 0.5681
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(高速公路路线与服务区关联表)
- bss_... | similarity: 0.5468
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_business_day_data(高速公路服务区每日经营数据统计表)
- bss_bus... | similarity: 0.5467
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(高速公路服务区基础信息表)
- bss_service_area... | similarity: 0.5392
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route(路段路线信息表)
- bss_section_route 表路... | similarity: 0.5061
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
- bss_car_day... | similarity: 0.5058
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.5681 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.5468 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.5467 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5392 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5061 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5058 ✓
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: 请问系统中哪个服务区档口最多?
- 2025-07-22 20:45:57 [WARNING] [vanna.BaseLLMChat] pgvector.py:666 - 向量查询未找到任何相关的错误SQL示例,问题: 请问系统中哪个服务区档口最多?
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 高速公路服务区每日经营数据统计表
- -- 描述: 高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
- create table public.bss_business_day_data (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- oper_date date -- 统计日期,
- service_no varchar(255) -- 服务区编码,
- service_name varchar(255) -- 服务区名称,
- branch_no varchar(255) -- 档口编码,
- branch_name varchar(255) -- 档口名称,
- wx numeric(19,4) -- 微信支付金额,
- wx_order integer -- 微信订单数量,
- zfb numeric(19,4) -- 支付宝支付金额,
- zf_order integer -- 支付宝订单数量,
- rmb numeric(19,4) -- 现金支付金额,
- rmb_order integer -- 现金订单数量,
- xs numeric(19,4) -- 行吧支付金额,
- xs_order integer -- 行吧支付订单数,
- jd numeric(19,4) -- 金豆支付金额,
- jd_order integer -- 金豆支付订单数,
- order_sum integer -- 订单总数,
- pay_sum numeric(19,4) -- 总支付金额,
- source_type integer -- 数据来源类型,
- primary key (id)
- )
- -- 中文名: 高速公路路线与服务区关联表
- -- 描述: 高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线唯一标识,主键,
- service_area_id varchar(32) not null -- 服务区唯一标识,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 服务区信息映射表
- -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
- create table public.bss_service_area_mapper (
- id varchar(32) not null -- 唯一标识符,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- service_name varchar(255) -- 服务区名称,
- service_no varchar(255) -- 服务区编码,
- service_area_id varchar(32) -- 服务区业务ID,
- source_system_type varchar(50) -- 数据来源系统,
- source_type integer -- 来源系统类型ID,
- primary key (id)
- )
- -- 中文名: 高速公路服务区基础信息表
- -- 描述: 高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
- create table public.bss_service_area (
- id varchar(32) not null -- 唯一标识符,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- service_area_name varchar(255) -- 服务区名称,
- service_area_no varchar(255) -- 服务区编码,
- company_id varchar(32) -- 所属公司ID,
- service_position varchar(255) -- 经纬度坐标,
- service_area_type varchar(50) -- 服务区类型,
- service_state varchar(50) -- 运营状态,
- primary key (id)
- )
- -- 中文名: 路段路线信息表
- -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
- create table public.bss_section_route (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- section_name varchar(255) -- 路段名称,
- route_name varchar(255) -- 路线名称,
- code varchar(255) -- 路段编号,
- primary key (id)
- )
- ===Additional Context
- ## bss_service_area_mapper(服务区信息映射表)
- bss_service_area_mapper 表服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
- 字段列表:
- - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 00e1e893909211ed8ee6fa163eaf653f, 013867f5962211ed8ee6fa163eaf653f]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2023-01-10 10:54:03, 2023-01-17 12:47:29]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2023-01-10 10:54:07, 2023-01-17 12:47:32]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - service_name (varchar(255)) - 服务区名称 [示例: 信丰西服务区, 南康北服务区]
- - service_no (varchar(255)) - 服务区编码 [示例: 1067, 1062]
- - service_area_id (varchar(32)) - 服务区业务ID [示例: 97cd6cd516a551409a4d453a58f9e170, fdbdd042962011ed8ee6fa163eaf653f]
- - source_system_type (varchar(50)) - 数据来源系统 [示例: 驿美, 驿购]
- - source_type (integer) - 来源系统类型ID [示例: 3, 1]
- 字段补充说明:
- - id 为主键
- - source_system_type 为枚举字段,包含取值:司乘管理、商业管理、驿购、驿美、手工录入
- - source_type 为枚举字段,包含取值:5、0、1、3、4
- ## bss_section_route_area_link(高速公路路线与服务区关联表)
- bss_section_route_area_link 表高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线唯一标识 [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区唯一标识 [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ## bss_business_day_data(高速公路服务区每日经营数据统计表)
- bss_business_day_data 表高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00827DFF993D415488EA1F07CAE6C440, 00e799048b8cbb8ee758eac9c8b4b820]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
- - created_by (varchar(50)) - 创建人 [示例: xingba]
- - update_ts (timestamp) - 更新时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - oper_date (date) - 统计日期 [示例: 2023-04-01]
- - service_no (varchar(255)) - 服务区编码 [示例: 1028, H0501]
- - service_name (varchar(255)) - 服务区名称 [示例: 宜春服务区, 庐山服务区]
- - branch_no (varchar(255)) - 档口编码 [示例: 1, H05016]
- - branch_name (varchar(255)) - 档口名称 [示例: 宜春南区, 庐山鲜徕客东区]
- - wx (numeric(19,4)) - 微信支付金额 [示例: 4790.0000, 2523.0000]
- - wx_order (integer) - 微信订单数量 [示例: 253, 133]
- - zfb (numeric(19,4)) - 支付宝支付金额 [示例: 229.0000, 0.0000]
- - zf_order (integer) - 支付宝订单数量 [示例: 15, 0]
- - rmb (numeric(19,4)) - 现金支付金额 [示例: 1058.5000, 124.0000]
- - rmb_order (integer) - 现金订单数量 [示例: 56, 12]
- - xs (numeric(19,4)) - 行吧支付金额 [示例: 0.0000, 40.0000]
- - xs_order (integer) - 行吧支付订单数 [示例: 0, 1]
- - jd (numeric(19,4)) - 金豆支付金额 [示例: 0.0000]
- - jd_order (integer) - 金豆支付订单数 [示例: 0]
- - order_sum (integer) - 订单总数 [示例: 324, 146]
- - pay_sum (numeric(19,4)) - 总支付金额 [示例: 6077.5000, 2687.0000]
- - source_type (integer) - 数据来源类型 [示例: 1, 0, 4]
- 字段补充说明:
- - id 为主键
- - source_type 为枚举字段,包含取值:0、4、1、2、3
- ## bss_service_area(高速公路服务区基础信息表)
- bss_service_area 表高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
- 字段列表:
- - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 数据版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_section_route(路段路线信息表)
- bss_section_route 表路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 04ri3j67a806uw2c6o6dwdtz4knexczh, 0g5mnefxxtukql2cq6acul7phgskowy7]
- - version (integer) - 数据版本号 [非空] [示例: 1, 0]
- - create_ts (timestamp) - 创建时间 [示例: 2021-10-29 19:43:50, 2022-03-04 16:07:16]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - section_name (varchar(255)) - 路段名称 [示例: 昌栗, 昌宁]
- - route_name (varchar(255)) - 路线名称 [示例: 昌栗, 昌韶]
- - code (varchar(255)) - 路段编号 [示例: SR0001, SR0002]
- 字段补充说明:
- - id 为主键
- - created_by 为枚举字段,包含取值:admin
- ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
- bss_car_day_count 表高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00022c1c99ff11ec86d4fa163ec0f8fc, 00022caa99ff11ec86d4fa163ec0f8fc]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
- - created_by (varchar(50)) - 创建人
- - update_ts (timestamp) - 更新时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - customer_count (bigint) - 车辆数量 [示例: 1114, 295]
- - car_type (varchar(100)) - 车辆类别 [示例: 其他]
- - count_date (date) - 统计日期 [示例: 2022-03-02, 2022-02-02]
- - service_area_id (varchar(32)) - 服务区ID [示例: 17461166e7fa3ecda03534a5795ce985, 81f4eb731fb0728aef17ae61f1f1daef]
- 字段补充说明:
- - id 为主键
- - car_type 为枚举字段,包含取值:其他、危化品、城际、过境
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 最近一周哪个服务区总车流量最高?取前5名。
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name AS 服务区名称, SUM(c.customer_count) AS 总车流量 FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - 7 AND c.delete_ts IS NULL AND s.delete_ts IS NULL GROUP BY s.service_area_name ORDER BY 总车流量 DESC LIMIT 5;
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sr.route_name AS 路线名称, COUNT(DISTINCT link.service_area_id) AS 服务区数量 FROM bss_section_route sr JOIN bss_section_route_area_link link ON sr.id = link.section_route_id WHERE sr.delete_ts IS NULL GROUP BY sr.route_name ORDER BY 服务区数量 DESC;
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 找出2023年4月平均每日订单数最高的服务区TOP3?
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name AS 服务区名称, AVG(order_sum) AS 日均订单数 FROM bss_business_day_data WHERE oper_date BETWEEN '2023-04-01' AND '2023-04-30' AND delete_ts IS NULL GROUP BY service_name ORDER BY 日均订单数 DESC LIMIT 3;
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 请问系统中哪个服务区档口最多?
- 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-22 20:45:57 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 2957.0 tokens (approx)
- 2025-07-22 20:45:57 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-22 20:45:57 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-22 20:46:00 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT service_name AS 服务区名称, COUNT(DISTINCT branch_no) AS 档口数量 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-22 20:46:00 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT service_name AS 服务区名称, COUNT(DISTINCT branch_no) AS 档口数量 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-22 20:46:00 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
- SELECT service_name AS 服务区名称, COUNT(DISTINCT branch_no) AS 档口数量 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name ORDER BY 档口数量 DESC LIMIT 1;
- 2025-07-22 20:54:14 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:16 [DEBUG] [vanna.EmbeddingFunction] embedding_function.py:169 - 成功生成embedding向量,维度: 1024
- 2025-07-22 20:54:19 [DEBUG] [vanna.EmbeddingFunction] embedding_function.py:169 - 成功生成embedding向量,维度: 1024
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。 | similarity: 0.6985
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)? | similarity: 0.6528
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近一周哪个服务区总车流量最高?取前5名。 | similarity: 0.6383
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月1日各服务区总收入排名前5的明细(包含订单总数)? | similarity: 0.636
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 找出2023年4月平均每日订单数最高的服务区TOP3? | similarity: 0.6116
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 计算每个服务区的“状态影响指数”=日均营收 × 平均车流量,并按此指数排序TOP 10? | similarity: 0.6106
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 2, 强制保留: 1)
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.6985 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.6528 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.6383 ✗
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日经营数据统计表
- -- 描述: 高速公路服务区每日经营数据统计表,记... | similarity: 0.6253
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路路线与服务区关联表
- -- 描述: 高速公路路线与服务区关联表,用于管理各路段... | similarity: 0.5987
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区基础信息表
- -- 描述: 高速公路服务区基础信息表,存储服务区名称、编... | similarity: 0.5917
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区信息映射表
- -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与... | similarity: 0.574
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线信息表
- -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速... | similarity: 0.5615
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日车辆流量统计表
- -- 描述: 高速公路服务区每日车辆流量统计表,记... | similarity: 0.5517
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.6253 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5987 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5917 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.574 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.5615 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.5517 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_business_day_data(高速公路服务区每日经营数据统计表)
- bss_bus... | similarity: 0.6161
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area_mapper(服务区信息映射表)
- bss_service_a... | similarity: 0.6125
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(高速公路服务区基础信息表)
- bss_service_area... | similarity: 0.6007
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(高速公路路线与服务区关联表)
- bss_... | similarity: 0.5907
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
- bss_car_day... | similarity: 0.5816
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route(路段路线信息表)
- bss_section_route 表路... | similarity: 0.5589
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6161 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.6125 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.6007 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5907 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5816 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5589 ✓
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:19 [WARNING] [vanna.BaseLLMChat] pgvector.py:666 - 向量查询未找到任何相关的错误SQL示例,问题: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 高速公路服务区每日经营数据统计表
- -- 描述: 高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
- create table public.bss_business_day_data (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- oper_date date -- 统计日期,
- service_no varchar(255) -- 服务区编码,
- service_name varchar(255) -- 服务区名称,
- branch_no varchar(255) -- 档口编码,
- branch_name varchar(255) -- 档口名称,
- wx numeric(19,4) -- 微信支付金额,
- wx_order integer -- 微信订单数量,
- zfb numeric(19,4) -- 支付宝支付金额,
- zf_order integer -- 支付宝订单数量,
- rmb numeric(19,4) -- 现金支付金额,
- rmb_order integer -- 现金订单数量,
- xs numeric(19,4) -- 行吧支付金额,
- xs_order integer -- 行吧支付订单数,
- jd numeric(19,4) -- 金豆支付金额,
- jd_order integer -- 金豆支付订单数,
- order_sum integer -- 订单总数,
- pay_sum numeric(19,4) -- 总支付金额,
- source_type integer -- 数据来源类型,
- primary key (id)
- )
- -- 中文名: 高速公路路线与服务区关联表
- -- 描述: 高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线唯一标识,主键,
- service_area_id varchar(32) not null -- 服务区唯一标识,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 高速公路服务区基础信息表
- -- 描述: 高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
- create table public.bss_service_area (
- id varchar(32) not null -- 唯一标识符,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- service_area_name varchar(255) -- 服务区名称,
- service_area_no varchar(255) -- 服务区编码,
- company_id varchar(32) -- 所属公司ID,
- service_position varchar(255) -- 经纬度坐标,
- service_area_type varchar(50) -- 服务区类型,
- service_state varchar(50) -- 运营状态,
- primary key (id)
- )
- -- 中文名: 服务区信息映射表
- -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
- create table public.bss_service_area_mapper (
- id varchar(32) not null -- 唯一标识符,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- service_name varchar(255) -- 服务区名称,
- service_no varchar(255) -- 服务区编码,
- service_area_id varchar(32) -- 服务区业务ID,
- source_system_type varchar(50) -- 数据来源系统,
- source_type integer -- 来源系统类型ID,
- primary key (id)
- )
- -- 中文名: 路段路线信息表
- -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
- create table public.bss_section_route (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- section_name varchar(255) -- 路段名称,
- route_name varchar(255) -- 路线名称,
- code varchar(255) -- 路段编号,
- primary key (id)
- )
- -- 中文名: 高速公路服务区每日车辆流量统计表
- -- 描述: 高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
- create table public.bss_car_day_count (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- customer_count bigint -- 车辆数量,
- car_type varchar(100) -- 车辆类别,
- count_date date -- 统计日期,
- service_area_id varchar(32) -- 服务区ID,
- primary key (id)
- )
- ===Additional Context
- ## bss_business_day_data(高速公路服务区每日经营数据统计表)
- bss_business_day_data 表高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00827DFF993D415488EA1F07CAE6C440, 00e799048b8cbb8ee758eac9c8b4b820]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
- - created_by (varchar(50)) - 创建人 [示例: xingba]
- - update_ts (timestamp) - 更新时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - oper_date (date) - 统计日期 [示例: 2023-04-01]
- - service_no (varchar(255)) - 服务区编码 [示例: 1028, H0501]
- - service_name (varchar(255)) - 服务区名称 [示例: 宜春服务区, 庐山服务区]
- - branch_no (varchar(255)) - 档口编码 [示例: 1, H05016]
- - branch_name (varchar(255)) - 档口名称 [示例: 宜春南区, 庐山鲜徕客东区]
- - wx (numeric(19,4)) - 微信支付金额 [示例: 4790.0000, 2523.0000]
- - wx_order (integer) - 微信订单数量 [示例: 253, 133]
- - zfb (numeric(19,4)) - 支付宝支付金额 [示例: 229.0000, 0.0000]
- - zf_order (integer) - 支付宝订单数量 [示例: 15, 0]
- - rmb (numeric(19,4)) - 现金支付金额 [示例: 1058.5000, 124.0000]
- - rmb_order (integer) - 现金订单数量 [示例: 56, 12]
- - xs (numeric(19,4)) - 行吧支付金额 [示例: 0.0000, 40.0000]
- - xs_order (integer) - 行吧支付订单数 [示例: 0, 1]
- - jd (numeric(19,4)) - 金豆支付金额 [示例: 0.0000]
- - jd_order (integer) - 金豆支付订单数 [示例: 0]
- - order_sum (integer) - 订单总数 [示例: 324, 146]
- - pay_sum (numeric(19,4)) - 总支付金额 [示例: 6077.5000, 2687.0000]
- - source_type (integer) - 数据来源类型 [示例: 1, 0, 4]
- 字段补充说明:
- - id 为主键
- - source_type 为枚举字段,包含取值:0、4、1、2、3
- ## bss_service_area_mapper(服务区信息映射表)
- bss_service_area_mapper 表服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
- 字段列表:
- - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 00e1e893909211ed8ee6fa163eaf653f, 013867f5962211ed8ee6fa163eaf653f]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2023-01-10 10:54:03, 2023-01-17 12:47:29]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2023-01-10 10:54:07, 2023-01-17 12:47:32]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - service_name (varchar(255)) - 服务区名称 [示例: 信丰西服务区, 南康北服务区]
- - service_no (varchar(255)) - 服务区编码 [示例: 1067, 1062]
- - service_area_id (varchar(32)) - 服务区业务ID [示例: 97cd6cd516a551409a4d453a58f9e170, fdbdd042962011ed8ee6fa163eaf653f]
- - source_system_type (varchar(50)) - 数据来源系统 [示例: 驿美, 驿购]
- - source_type (integer) - 来源系统类型ID [示例: 3, 1]
- 字段补充说明:
- - id 为主键
- - source_system_type 为枚举字段,包含取值:司乘管理、商业管理、驿购、驿美、手工录入
- - source_type 为枚举字段,包含取值:5、0、1、3、4
- ## bss_service_area(高速公路服务区基础信息表)
- bss_service_area 表高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
- 字段列表:
- - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 数据版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_section_route_area_link(高速公路路线与服务区关联表)
- bss_section_route_area_link 表高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线唯一标识 [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区唯一标识 [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
- bss_car_day_count 表高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00022c1c99ff11ec86d4fa163ec0f8fc, 00022caa99ff11ec86d4fa163ec0f8fc]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
- - created_by (varchar(50)) - 创建人
- - update_ts (timestamp) - 更新时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - customer_count (bigint) - 车辆数量 [示例: 1114, 295]
- - car_type (varchar(100)) - 车辆类别 [示例: 其他]
- - count_date (date) - 统计日期 [示例: 2022-03-02, 2022-02-02]
- - service_area_id (varchar(32)) - 服务区ID [示例: 17461166e7fa3ecda03534a5795ce985, 81f4eb731fb0728aef17ae61f1f1daef]
- 字段补充说明:
- - id 为主键
- - car_type 为枚举字段,包含取值:其他、危化品、城际、过境
- ## bss_section_route(路段路线信息表)
- bss_section_route 表路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 04ri3j67a806uw2c6o6dwdtz4knexczh, 0g5mnefxxtukql2cq6acul7phgskowy7]
- - version (integer) - 数据版本号 [非空] [示例: 1, 0]
- - create_ts (timestamp) - 创建时间 [示例: 2021-10-29 19:43:50, 2022-03-04 16:07:16]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - section_name (varchar(255)) - 路段名称 [示例: 昌栗, 昌宁]
- - route_name (varchar(255)) - 路线名称 [示例: 昌栗, 昌韶]
- - code (varchar(255)) - 路段编号 [示例: SR0001, SR0002]
- 字段补充说明:
- - id 为主键
- - created_by 为枚举字段,包含取值:admin
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sr.route_name AS 路线名称, COUNT(DISTINCT link.service_area_id) AS 服务区数量 FROM bss_section_route sr JOIN bss_section_route_area_link link ON sr.id = link.section_route_id WHERE sr.delete_ts IS NULL GROUP BY sr.route_name ORDER BY 服务区数量 DESC;
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)?
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT branch_name AS 档口名称, ROUND(SUM(pay_sum)::numeric, 2) AS 收入总额 FROM bss_business_day_data WHERE service_name = '庐山服务区' AND oper_date BETWEEN '2023-04-01' AND '2023-04-30' AND delete_ts IS NULL GROUP BY branch_name ORDER BY 收入总额 DESC LIMIT 3;
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 最近一周哪个服务区总车流量最高?取前5名。
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name AS 服务区名称, SUM(c.customer_count) AS 总车流量 FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - 7 AND c.delete_ts IS NULL AND s.delete_ts IS NULL GROUP BY s.service_area_name ORDER BY 总车流量 DESC LIMIT 5;
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-22 20:54:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 3195.75 tokens (approx)
- 2025-07-22 20:54:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-22 20:54:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-22 20:54:23 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT
- service_name AS 服务区名称,
- COUNT(*) AS 餐饮档口数量
- FROM
- bss_business_day_data
- WHERE
- service_name = '南城服务区'
- AND branch_name LIKE '%餐饮%'
- AND delete_ts IS NULL
- GROUP BY
- serv...
- 2025-07-22 20:54:23 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT
- service_name AS 服务区名称,
- COUNT(*) AS 餐饮档口数量
- FROM
- bss_business_day_data
- WHERE
- service_name = '南城服务区'
- AND branch_name LIKE '%餐饮%'
- AND delete_ts IS NULL
- GROUP BY
- service_name;
- 2025-07-22 20:54:23 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
- SELECT
- service_name AS 服务区名称,
- COUNT(*) AS 餐饮档口数量
- FROM
- bss_business_day_data
- WHERE
- service_name = '南城服务区'
- AND branch_name LIKE '%餐饮%'
- AND delete_ts IS NULL
- GROUP BY
- service_name;
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。 | similarity: 0.6985
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)? | similarity: 0.6528
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近一周哪个服务区总车流量最高?取前5名。 | similarity: 0.6383
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月1日各服务区总收入排名前5的明细(包含订单总数)? | similarity: 0.636
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 找出2023年4月平均每日订单数最高的服务区TOP3? | similarity: 0.6116
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 计算每个服务区的“状态影响指数”=日均营收 × 平均车流量,并按此指数排序TOP 10? | similarity: 0.6106
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 2, 强制保留: 1)
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.6985 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.6528 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.6383 ✗
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日经营数据统计表
- -- 描述: 高速公路服务区每日经营数据统计表,记... | similarity: 0.6253
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路路线与服务区关联表
- -- 描述: 高速公路路线与服务区关联表,用于管理各路段... | similarity: 0.5987
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区基础信息表
- -- 描述: 高速公路服务区基础信息表,存储服务区名称、编... | similarity: 0.5917
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区信息映射表
- -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与... | similarity: 0.574
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线信息表
- -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速... | similarity: 0.5615
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日车辆流量统计表
- -- 描述: 高速公路服务区每日车辆流量统计表,记... | similarity: 0.5517
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.6253 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5987 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5917 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.574 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.5615 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.5517 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_business_day_data(高速公路服务区每日经营数据统计表)
- bss_bus... | similarity: 0.6161
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area_mapper(服务区信息映射表)
- bss_service_a... | similarity: 0.6125
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(高速公路服务区基础信息表)
- bss_service_area... | similarity: 0.6007
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(高速公路路线与服务区关联表)
- bss_... | similarity: 0.5907
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
- bss_car_day... | similarity: 0.5816
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route(路段路线信息表)
- bss_section_route 表路... | similarity: 0.5589
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6161 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.6125 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.6007 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5907 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5816 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5589 ✓
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:40 [WARNING] [vanna.BaseLLMChat] pgvector.py:666 - 向量查询未找到任何相关的错误SQL示例,问题: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
- Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
- ===Tables
- -- 中文名: 高速公路服务区每日经营数据统计表
- -- 描述: 高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
- create table public.bss_business_day_data (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- oper_date date -- 统计日期,
- service_no varchar(255) -- 服务区编码,
- service_name varchar(255) -- 服务区名称,
- branch_no varchar(255) -- 档口编码,
- branch_name varchar(255) -- 档口名称,
- wx numeric(19,4) -- 微信支付金额,
- wx_order integer -- 微信订单数量,
- zfb numeric(19,4) -- 支付宝支付金额,
- zf_order integer -- 支付宝订单数量,
- rmb numeric(19,4) -- 现金支付金额,
- rmb_order integer -- 现金订单数量,
- xs numeric(19,4) -- 行吧支付金额,
- xs_order integer -- 行吧支付订单数,
- jd numeric(19,4) -- 金豆支付金额,
- jd_order integer -- 金豆支付订单数,
- order_sum integer -- 订单总数,
- pay_sum numeric(19,4) -- 总支付金额,
- source_type integer -- 数据来源类型,
- primary key (id)
- )
- -- 中文名: 高速公路路线与服务区关联表
- -- 描述: 高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
- create table public.bss_section_route_area_link (
- section_route_id varchar(32) not null -- 路段路线唯一标识,主键,
- service_area_id varchar(32) not null -- 服务区唯一标识,主键,
- primary key (section_route_id, service_area_id)
- )
- -- 中文名: 高速公路服务区基础信息表
- -- 描述: 高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
- create table public.bss_service_area (
- id varchar(32) not null -- 唯一标识符,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- service_area_name varchar(255) -- 服务区名称,
- service_area_no varchar(255) -- 服务区编码,
- company_id varchar(32) -- 所属公司ID,
- service_position varchar(255) -- 经纬度坐标,
- service_area_type varchar(50) -- 服务区类型,
- service_state varchar(50) -- 运营状态,
- primary key (id)
- )
- -- 中文名: 服务区信息映射表
- -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
- create table public.bss_service_area_mapper (
- id varchar(32) not null -- 唯一标识符,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- service_name varchar(255) -- 服务区名称,
- service_no varchar(255) -- 服务区编码,
- service_area_id varchar(32) -- 服务区业务ID,
- source_system_type varchar(50) -- 数据来源系统,
- source_type integer -- 来源系统类型ID,
- primary key (id)
- )
- -- 中文名: 路段路线信息表
- -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
- create table public.bss_section_route (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- section_name varchar(255) -- 路段名称,
- route_name varchar(255) -- 路线名称,
- code varchar(255) -- 路段编号,
- primary key (id)
- )
- -- 中文名: 高速公路服务区每日车辆流量统计表
- -- 描述: 高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
- create table public.bss_car_day_count (
- id varchar(32) not null -- 主键ID,主键,
- version integer not null -- 数据版本号,
- create_ts timestamp -- 创建时间,
- created_by varchar(50) -- 创建人,
- update_ts timestamp -- 更新时间,
- updated_by varchar(50) -- 更新人,
- delete_ts timestamp -- 删除时间,
- deleted_by varchar(50) -- 删除人,
- customer_count bigint -- 车辆数量,
- car_type varchar(100) -- 车辆类别,
- count_date date -- 统计日期,
- service_area_id varchar(32) -- 服务区ID,
- primary key (id)
- )
- ===Additional Context
- ## bss_business_day_data(高速公路服务区每日经营数据统计表)
- bss_business_day_data 表高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00827DFF993D415488EA1F07CAE6C440, 00e799048b8cbb8ee758eac9c8b4b820]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
- - created_by (varchar(50)) - 创建人 [示例: xingba]
- - update_ts (timestamp) - 更新时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - oper_date (date) - 统计日期 [示例: 2023-04-01]
- - service_no (varchar(255)) - 服务区编码 [示例: 1028, H0501]
- - service_name (varchar(255)) - 服务区名称 [示例: 宜春服务区, 庐山服务区]
- - branch_no (varchar(255)) - 档口编码 [示例: 1, H05016]
- - branch_name (varchar(255)) - 档口名称 [示例: 宜春南区, 庐山鲜徕客东区]
- - wx (numeric(19,4)) - 微信支付金额 [示例: 4790.0000, 2523.0000]
- - wx_order (integer) - 微信订单数量 [示例: 253, 133]
- - zfb (numeric(19,4)) - 支付宝支付金额 [示例: 229.0000, 0.0000]
- - zf_order (integer) - 支付宝订单数量 [示例: 15, 0]
- - rmb (numeric(19,4)) - 现金支付金额 [示例: 1058.5000, 124.0000]
- - rmb_order (integer) - 现金订单数量 [示例: 56, 12]
- - xs (numeric(19,4)) - 行吧支付金额 [示例: 0.0000, 40.0000]
- - xs_order (integer) - 行吧支付订单数 [示例: 0, 1]
- - jd (numeric(19,4)) - 金豆支付金额 [示例: 0.0000]
- - jd_order (integer) - 金豆支付订单数 [示例: 0]
- - order_sum (integer) - 订单总数 [示例: 324, 146]
- - pay_sum (numeric(19,4)) - 总支付金额 [示例: 6077.5000, 2687.0000]
- - source_type (integer) - 数据来源类型 [示例: 1, 0, 4]
- 字段补充说明:
- - id 为主键
- - source_type 为枚举字段,包含取值:0、4、1、2、3
- ## bss_service_area_mapper(服务区信息映射表)
- bss_service_area_mapper 表服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
- 字段列表:
- - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 00e1e893909211ed8ee6fa163eaf653f, 013867f5962211ed8ee6fa163eaf653f]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2023-01-10 10:54:03, 2023-01-17 12:47:29]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2023-01-10 10:54:07, 2023-01-17 12:47:32]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - service_name (varchar(255)) - 服务区名称 [示例: 信丰西服务区, 南康北服务区]
- - service_no (varchar(255)) - 服务区编码 [示例: 1067, 1062]
- - service_area_id (varchar(32)) - 服务区业务ID [示例: 97cd6cd516a551409a4d453a58f9e170, fdbdd042962011ed8ee6fa163eaf653f]
- - source_system_type (varchar(50)) - 数据来源系统 [示例: 驿美, 驿购]
- - source_type (integer) - 来源系统类型ID [示例: 3, 1]
- 字段补充说明:
- - id 为主键
- - source_system_type 为枚举字段,包含取值:司乘管理、商业管理、驿购、驿美、手工录入
- - source_type 为枚举字段,包含取值:5、0、1、3、4
- ## bss_service_area(高速公路服务区基础信息表)
- bss_service_area 表高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
- 字段列表:
- - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
- - version (integer) - 数据版本号 [非空] [示例: 3, 6]
- - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
- - updated_by (varchar(50)) - 更新人 [示例: admin]
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人 [示例: ]
- - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
- - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
- - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
- - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
- - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
- - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
- 字段补充说明:
- - id 为主键
- - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
- - service_state 为枚举字段,包含取值:开放、关闭、上传数据
- ## bss_section_route_area_link(高速公路路线与服务区关联表)
- bss_section_route_area_link 表高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
- 字段列表:
- - section_route_id (varchar(32)) - 路段路线唯一标识 [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
- - service_area_id (varchar(32)) - 服务区唯一标识 [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
- 字段补充说明:
- - 复合主键:section_route_id, service_area_id
- ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
- bss_car_day_count 表高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00022c1c99ff11ec86d4fa163ec0f8fc, 00022caa99ff11ec86d4fa163ec0f8fc]
- - version (integer) - 数据版本号 [非空] [示例: 1]
- - create_ts (timestamp) - 创建时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
- - created_by (varchar(50)) - 创建人
- - update_ts (timestamp) - 更新时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - customer_count (bigint) - 车辆数量 [示例: 1114, 295]
- - car_type (varchar(100)) - 车辆类别 [示例: 其他]
- - count_date (date) - 统计日期 [示例: 2022-03-02, 2022-02-02]
- - service_area_id (varchar(32)) - 服务区ID [示例: 17461166e7fa3ecda03534a5795ce985, 81f4eb731fb0728aef17ae61f1f1daef]
- 字段补充说明:
- - id 为主键
- - car_type 为枚举字段,包含取值:其他、危化品、城际、过境
- ## bss_section_route(路段路线信息表)
- bss_section_route 表路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
- 字段列表:
- - id (varchar(32)) - 主键ID [主键, 非空] [示例: 04ri3j67a806uw2c6o6dwdtz4knexczh, 0g5mnefxxtukql2cq6acul7phgskowy7]
- - version (integer) - 数据版本号 [非空] [示例: 1, 0]
- - create_ts (timestamp) - 创建时间 [示例: 2021-10-29 19:43:50, 2022-03-04 16:07:16]
- - created_by (varchar(50)) - 创建人 [示例: admin]
- - update_ts (timestamp) - 更新时间
- - updated_by (varchar(50)) - 更新人
- - delete_ts (timestamp) - 删除时间
- - deleted_by (varchar(50)) - 删除人
- - section_name (varchar(255)) - 路段名称 [示例: 昌栗, 昌宁]
- - route_name (varchar(255)) - 路线名称 [示例: 昌栗, 昌韶]
- - code (varchar(255)) - 路段编号 [示例: SR0001, SR0002]
- 字段补充说明:
- - id 为主键
- - created_by 为枚举字段,包含取值:admin
- ===Response Guidelines
- **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
- 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
- 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
- 3. If the provided context is insufficient, please explain why it can't be generated.
- 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
- - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
- interpret it as 'How many dining stalls does Nancheng Service Area have?'
- 5. Please use the most relevant table(s).
- 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
- 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
- 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
- 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
- - Every column MUST use AS with a Chinese alias
- - Raw column names without aliases are NOT acceptable
- - Examples:
- * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
- * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
- * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
- - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sr.route_name AS 路线名称, COUNT(DISTINCT link.service_area_id) AS 服务区数量 FROM bss_section_route sr JOIN bss_section_route_area_link link ON sr.id = link.section_route_id WHERE sr.delete_ts IS NULL GROUP BY sr.route_name ORDER BY 服务区数量 DESC;
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)?
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT branch_name AS 档口名称, ROUND(SUM(pay_sum)::numeric, 2) AS 收入总额 FROM bss_business_day_data WHERE service_name = '庐山服务区' AND oper_date BETWEEN '2023-04-01' AND '2023-04-30' AND delete_ts IS NULL GROUP BY branch_name ORDER BY 收入总额 DESC LIMIT 3;
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: 最近一周哪个服务区总车流量最高?取前5名。
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name AS 服务区名称, SUM(c.customer_count) AS 总车流量 FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - 7 AND c.delete_ts IS NULL AND s.delete_ts IS NULL GROUP BY s.service_area_name ORDER BY 总车流量 DESC LIMIT 5;
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
- user_content: Previous conversation context:
- human: 请问系统中哪个服务区档口最多?
- ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
- Current user question:
- human: 请问这个服务区有几个餐饮档口?
- Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
- 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
- 2025-07-22 20:54:40 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
- Using model qwen-plus-latest for 3195.75 tokens (approx)
- 2025-07-22 20:54:40 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
- 2025-07-22 20:54:40 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
- 2025-07-22 20:54:48 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT
- service_name AS 服务区名称,
- COUNT(*) AS 餐饮档口数量
- FROM
- bss_business_day_data
- WHERE
- service_name = '南城服务区'
- AND branch_name LIKE '%餐饮%'
- AND delete_ts IS NULL
- GROUP BY
- serv...
- 2025-07-22 20:54:48 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT
- service_name AS 服务区名称,
- COUNT(*) AS 餐饮档口数量
- FROM
- bss_business_day_data
- WHERE
- service_name = '南城服务区'
- AND branch_name LIKE '%餐饮%'
- AND delete_ts IS NULL
- GROUP BY
- service_name;
- 2025-07-22 20:54:48 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
- SELECT
- service_name AS 服务区名称,
- COUNT(*) AS 餐饮档口数量
- FROM
- bss_business_day_data
- WHERE
- service_name = '南城服务区'
- AND branch_name LIKE '%餐饮%'
- AND delete_ts IS NULL
- GROUP BY
- service_name;
|