vanna.log.2025-07-22 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486
  1. 2025-07-22 01:03:06 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  2. 2025-07-22 01:03:06 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  3. 2025-07-22 01:03:06 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  4. 2025-07-22 01:03:07 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  5. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  6. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  7. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  8. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  9. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  10. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  11. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  12. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  13. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  14. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  15. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  16. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000022E4EDBB830>
  17. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  18. 2025-07-22 01:03:07 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  19. 2025-07-22 01:03:07 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  20. 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  21. 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  22. 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  23. 2025-07-22 01:03:08 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  24. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  25. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  26. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  27. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  28. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  29. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  30. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  31. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  32. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  33. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  34. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  35. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000022E4F300350>
  36. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  37. 2025-07-22 01:03:08 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  38. 2025-07-22 01:03:08 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  39. 2025-07-22 01:03:09 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  40. 2025-07-22 11:33:44 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  41. 2025-07-22 11:33:44 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  42. 2025-07-22 11:33:44 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  43. 2025-07-22 11:33:44 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  44. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  45. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  46. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  47. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  48. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  49. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  50. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  51. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  52. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  53. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  54. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  55. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001F8D8D51D90>
  56. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  57. 2025-07-22 11:33:44 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  58. 2025-07-22 11:33:44 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  59. 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  60. 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  61. 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  62. 2025-07-22 11:33:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  63. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  64. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  65. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  66. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  67. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  68. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  69. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  70. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  71. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  72. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  73. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  74. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001F8D97D3230>
  75. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  76. 2025-07-22 11:33:46 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  77. 2025-07-22 11:33:46 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  78. 2025-07-22 11:33:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  79. 2025-07-22 11:53:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  80. 2025-07-22 11:53:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  81. 2025-07-22 11:53:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  82. 2025-07-22 11:53:46 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  83. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  84. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  85. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  86. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  87. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  88. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  89. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  90. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  91. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  92. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  93. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  94. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000024333E01DC0>
  95. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  96. 2025-07-22 11:53:46 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  97. 2025-07-22 11:53:46 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  98. 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  99. 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  100. 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  101. 2025-07-22 11:53:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  102. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  103. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  104. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  105. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  106. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  107. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  108. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  109. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  110. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  111. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  112. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  113. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000024335C330B0>
  114. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  115. 2025-07-22 11:53:47 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  116. 2025-07-22 11:53:47 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  117. 2025-07-22 11:53:49 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  118. 2025-07-22 11:56:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  119. 2025-07-22 11:56:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  120. 2025-07-22 11:56:58 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  121. 2025-07-22 11:56:59 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  122. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  123. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  124. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  125. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  126. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  127. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  128. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  129. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  130. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  131. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  132. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  133. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000281E9462A20>
  134. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  135. 2025-07-22 11:56:59 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  136. 2025-07-22 11:56:59 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  137. 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  138. 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  139. 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  140. 2025-07-22 11:57:00 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  141. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  142. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  143. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  144. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  145. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  146. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  147. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  148. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  149. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  150. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  151. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  152. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x00000281E9B23080>
  153. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  154. 2025-07-22 11:57:01 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  155. 2025-07-22 11:57:01 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  156. 2025-07-22 11:57:02 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  157. 2025-07-22 12:08:43 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  158. 2025-07-22 12:08:43 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  159. 2025-07-22 12:08:43 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  160. 2025-07-22 12:08:43 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  161. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  162. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  163. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  164. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  165. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  166. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  167. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  168. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  169. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  170. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  171. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  172. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000002198FF31D60>
  173. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  174. 2025-07-22 12:08:43 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  175. 2025-07-22 12:08:43 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  176. 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  177. 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  178. 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  179. 2025-07-22 12:08:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  180. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  181. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  182. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  183. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  184. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  185. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  186. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  187. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  188. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  189. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  190. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  191. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000021991D13170>
  192. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  193. 2025-07-22 12:08:45 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  194. 2025-07-22 12:08:45 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  195. 2025-07-22 12:08:47 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  196. 2025-07-22 12:26:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  197. 2025-07-22 12:26:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  198. 2025-07-22 12:26:17 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  199. 2025-07-22 12:26:17 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  200. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  201. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  202. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  203. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  204. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  205. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  206. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  207. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  208. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  209. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  210. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  211. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000025BB4681D60>
  212. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  213. 2025-07-22 12:26:17 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  214. 2025-07-22 12:26:17 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  215. 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  216. 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  217. 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  218. 2025-07-22 12:26:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  219. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  220. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  221. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  222. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  223. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  224. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  225. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  226. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  227. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  228. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  229. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  230. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000025BB5F38050>
  231. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  232. 2025-07-22 12:26:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  233. 2025-07-22 12:26:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  234. 2025-07-22 12:26:20 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  235. 2025-07-22 13:24:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  236. 2025-07-22 13:24:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  237. 2025-07-22 13:24:45 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  238. 2025-07-22 13:24:45 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  239. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  240. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  241. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  242. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  243. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  244. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  245. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  246. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  247. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  248. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  249. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  250. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001C7F90D1D30>
  251. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  252. 2025-07-22 13:24:45 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  253. 2025-07-22 13:24:45 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  254. 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  255. 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  256. 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  257. 2025-07-22 13:24:46 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  258. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  259. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  260. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  261. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  262. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  263. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  264. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  265. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  266. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  267. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  268. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  269. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001C7FAAF3080>
  270. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  271. 2025-07-22 13:24:46 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  272. 2025-07-22 13:24:46 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  273. 2025-07-22 13:24:48 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  274. 2025-07-22 13:32:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  275. 2025-07-22 13:32:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  276. 2025-07-22 13:32:18 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  277. 2025-07-22 13:32:18 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  278. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  279. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  280. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  281. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  282. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  283. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  284. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  285. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  286. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  287. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  288. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  289. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001438F619A00>
  290. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  291. 2025-07-22 13:32:18 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  292. 2025-07-22 13:32:18 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  293. 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  294. 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  295. 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  296. 2025-07-22 13:32:19 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  297. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  298. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  299. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  300. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  301. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  302. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  303. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  304. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  305. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  306. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  307. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  308. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x000001438FDA3080>
  309. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  310. 2025-07-22 13:32:20 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  311. 2025-07-22 13:32:20 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  312. 2025-07-22 13:32:21 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  313. 2025-07-22 17:38:36 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  314. 2025-07-22 17:38:36 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  315. 2025-07-22 17:38:36 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  316. 2025-07-22 17:38:36 [DEBUG] [vanna.PromptLoader] load_prompts.py:37 - 成功加载提示词配置: C:\Projects\cursor_projects\Vanna-Chainlit-Chromadb\customllm\llm_prompts.yaml
  317. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  318. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  319. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  320. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  321. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  322. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  323. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  324. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  325. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  326. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  327. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  328. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000023E05F45FA0>
  329. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  330. 2025-07-22 17:38:36 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  331. 2025-07-22 17:38:36 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  332. 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  333. 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  334. 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  335. 2025-07-22 17:38:37 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  336. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  337. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  338. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  339. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  340. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  341. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  342. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  343. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  344. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  345. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  346. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  347. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000023E07CF30B0>
  348. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  349. 2025-07-22 17:38:38 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  350. 2025-07-22 17:38:38 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  351. 2025-07-22 17:38:39 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  352. 2025-07-22 20:45:56 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:55 - 创建QIANWEN+PGVECTOR实例
  353. 2025-07-22 20:45:56 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:74 - 已配置使用PgVector,连接字符串: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  354. 2025-07-22 20:45:56 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:79 - 已配置使用API嵌入模型: text-embedding-v4
  355. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:29 - 传入的 config 参数如下:
  356. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - api_key: sk-db68e37f00974031935395315bfe07f0
  357. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - base_url: https://dashscope.aliyuncs.com/compatible-mode/v1
  358. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - model: qwen-plus-latest
  359. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - allow_llm_to_see_data: True
  360. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - temperature: 0.6
  361. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - n_results: 6
  362. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - language: Chinese
  363. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - stream: False
  364. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - enable_thinking: False
  365. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - connection_string: postgresql://postgres:postgres@192.168.67.1:5432/highway_pgvector_db
  366. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:31 - embedding_function: <core.embedding_function.EmbeddingFunction object at 0x0000023E09531AF0>
  367. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:37 - temperature is changed to: 0.6
  368. 2025-07-22 20:45:56 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:48 - 错误SQL提示配置: ENABLE_ERROR_SQL_PROMPT = True
  369. 2025-07-22 20:45:56 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:11 - QianWenChat init
  370. 2025-07-22 20:45:57 [INFO] [vanna.VannaFactory] vanna_llm_factory.py:86 - 已连接到业务数据库: 192.168.67.1:6432/highway_db
  371. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: 请问系统中哪个服务区档口最多?
  372. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近一周哪个服务区总车流量最高?取前5名。 | similarity: 0.6381
  373. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。 | similarity: 0.6209
  374. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 找出2023年4月平均每日订单数最高的服务区TOP3? | similarity: 0.6178
  375. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 昨日车流量最低的服务区是哪一个? | similarity: 0.6156
  376. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月订单数环比增长最快的服务区(相比3月)? | similarity: 0.6115
  377. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月1日各服务区总收入排名前5的明细(包含订单总数)? | similarity: 0.6092
  378. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
  379. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 0, 强制保留: 3)
  380. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.6381 ✗
  381. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.6209 ✗
  382. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.6178 ✗
  383. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日经营数据统计表
  384. -- 描述: 高速公路服务区每日经营数据统计表,记... | similarity: 0.5484
  385. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路路线与服务区关联表
  386. -- 描述: 高速公路路线与服务区关联表,用于管理各路段... | similarity: 0.5339
  387. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区信息映射表
  388. -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与... | similarity: 0.5318
  389. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区基础信息表
  390. -- 描述: 高速公路服务区基础信息表,存储服务区名称、编... | similarity: 0.5285
  391. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线信息表
  392. -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速... | similarity: 0.5115
  393. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日车辆流量统计表
  394. -- 描述: 高速公路服务区每日车辆流量统计表,记... | similarity: 0.4766
  395. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
  396. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 5 条, 过滤掉 1 条 (全部满足阈值)
  397. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.5484 ✓
  398. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5339 ✓
  399. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5318 ✓
  400. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.5285 ✓
  401. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.5115 ✓
  402. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area_mapper(服务区信息映射表)
  403. bss_service_a... | similarity: 0.5681
  404. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(高速公路路线与服务区关联表)
  405. bss_... | similarity: 0.5468
  406. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_business_day_data(高速公路服务区每日经营数据统计表)
  407. bss_bus... | similarity: 0.5467
  408. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(高速公路服务区基础信息表)
  409. bss_service_area... | similarity: 0.5392
  410. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route(路段路线信息表)
  411. bss_section_route 表路... | similarity: 0.5061
  412. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
  413. bss_car_day... | similarity: 0.5058
  414. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
  415. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
  416. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.5681 ✓
  417. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.5468 ✓
  418. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.5467 ✓
  419. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5392 ✓
  420. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5061 ✓
  421. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5058 ✓
  422. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: 请问系统中哪个服务区档口最多?
  423. 2025-07-22 20:45:57 [WARNING] [vanna.BaseLLMChat] pgvector.py:666 - 向量查询未找到任何相关的错误SQL示例,问题: 请问系统中哪个服务区档口最多?
  424. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
  425. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
  426. Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
  427. ===Tables
  428. -- 中文名: 高速公路服务区每日经营数据统计表
  429. -- 描述: 高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
  430. create table public.bss_business_day_data (
  431. id varchar(32) not null -- 主键ID,主键,
  432. version integer not null -- 数据版本号,
  433. create_ts timestamp -- 创建时间,
  434. created_by varchar(50) -- 创建人,
  435. update_ts timestamp -- 更新时间,
  436. updated_by varchar(50) -- 更新人,
  437. delete_ts timestamp -- 删除时间,
  438. deleted_by varchar(50) -- 删除人,
  439. oper_date date -- 统计日期,
  440. service_no varchar(255) -- 服务区编码,
  441. service_name varchar(255) -- 服务区名称,
  442. branch_no varchar(255) -- 档口编码,
  443. branch_name varchar(255) -- 档口名称,
  444. wx numeric(19,4) -- 微信支付金额,
  445. wx_order integer -- 微信订单数量,
  446. zfb numeric(19,4) -- 支付宝支付金额,
  447. zf_order integer -- 支付宝订单数量,
  448. rmb numeric(19,4) -- 现金支付金额,
  449. rmb_order integer -- 现金订单数量,
  450. xs numeric(19,4) -- 行吧支付金额,
  451. xs_order integer -- 行吧支付订单数,
  452. jd numeric(19,4) -- 金豆支付金额,
  453. jd_order integer -- 金豆支付订单数,
  454. order_sum integer -- 订单总数,
  455. pay_sum numeric(19,4) -- 总支付金额,
  456. source_type integer -- 数据来源类型,
  457. primary key (id)
  458. )
  459. -- 中文名: 高速公路路线与服务区关联表
  460. -- 描述: 高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
  461. create table public.bss_section_route_area_link (
  462. section_route_id varchar(32) not null -- 路段路线唯一标识,主键,
  463. service_area_id varchar(32) not null -- 服务区唯一标识,主键,
  464. primary key (section_route_id, service_area_id)
  465. )
  466. -- 中文名: 服务区信息映射表
  467. -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
  468. create table public.bss_service_area_mapper (
  469. id varchar(32) not null -- 唯一标识符,主键,
  470. version integer not null -- 数据版本号,
  471. create_ts timestamp -- 创建时间,
  472. created_by varchar(50) -- 创建人,
  473. update_ts timestamp -- 更新时间,
  474. updated_by varchar(50) -- 更新人,
  475. delete_ts timestamp -- 删除时间,
  476. deleted_by varchar(50) -- 删除人,
  477. service_name varchar(255) -- 服务区名称,
  478. service_no varchar(255) -- 服务区编码,
  479. service_area_id varchar(32) -- 服务区业务ID,
  480. source_system_type varchar(50) -- 数据来源系统,
  481. source_type integer -- 来源系统类型ID,
  482. primary key (id)
  483. )
  484. -- 中文名: 高速公路服务区基础信息表
  485. -- 描述: 高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
  486. create table public.bss_service_area (
  487. id varchar(32) not null -- 唯一标识符,主键,
  488. version integer not null -- 数据版本号,
  489. create_ts timestamp -- 创建时间,
  490. created_by varchar(50) -- 创建人,
  491. update_ts timestamp -- 更新时间,
  492. updated_by varchar(50) -- 更新人,
  493. delete_ts timestamp -- 删除时间,
  494. deleted_by varchar(50) -- 删除人,
  495. service_area_name varchar(255) -- 服务区名称,
  496. service_area_no varchar(255) -- 服务区编码,
  497. company_id varchar(32) -- 所属公司ID,
  498. service_position varchar(255) -- 经纬度坐标,
  499. service_area_type varchar(50) -- 服务区类型,
  500. service_state varchar(50) -- 运营状态,
  501. primary key (id)
  502. )
  503. -- 中文名: 路段路线信息表
  504. -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
  505. create table public.bss_section_route (
  506. id varchar(32) not null -- 主键ID,主键,
  507. version integer not null -- 数据版本号,
  508. create_ts timestamp -- 创建时间,
  509. created_by varchar(50) -- 创建人,
  510. update_ts timestamp -- 更新时间,
  511. updated_by varchar(50) -- 更新人,
  512. delete_ts timestamp -- 删除时间,
  513. deleted_by varchar(50) -- 删除人,
  514. section_name varchar(255) -- 路段名称,
  515. route_name varchar(255) -- 路线名称,
  516. code varchar(255) -- 路段编号,
  517. primary key (id)
  518. )
  519. ===Additional Context
  520. ## bss_service_area_mapper(服务区信息映射表)
  521. bss_service_area_mapper 表服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
  522. 字段列表:
  523. - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 00e1e893909211ed8ee6fa163eaf653f, 013867f5962211ed8ee6fa163eaf653f]
  524. - version (integer) - 数据版本号 [非空] [示例: 1]
  525. - create_ts (timestamp) - 创建时间 [示例: 2023-01-10 10:54:03, 2023-01-17 12:47:29]
  526. - created_by (varchar(50)) - 创建人 [示例: admin]
  527. - update_ts (timestamp) - 更新时间 [示例: 2023-01-10 10:54:07, 2023-01-17 12:47:32]
  528. - updated_by (varchar(50)) - 更新人
  529. - delete_ts (timestamp) - 删除时间
  530. - deleted_by (varchar(50)) - 删除人
  531. - service_name (varchar(255)) - 服务区名称 [示例: 信丰西服务区, 南康北服务区]
  532. - service_no (varchar(255)) - 服务区编码 [示例: 1067, 1062]
  533. - service_area_id (varchar(32)) - 服务区业务ID [示例: 97cd6cd516a551409a4d453a58f9e170, fdbdd042962011ed8ee6fa163eaf653f]
  534. - source_system_type (varchar(50)) - 数据来源系统 [示例: 驿美, 驿购]
  535. - source_type (integer) - 来源系统类型ID [示例: 3, 1]
  536. 字段补充说明:
  537. - id 为主键
  538. - source_system_type 为枚举字段,包含取值:司乘管理、商业管理、驿购、驿美、手工录入
  539. - source_type 为枚举字段,包含取值:5、0、1、3、4
  540. ## bss_section_route_area_link(高速公路路线与服务区关联表)
  541. bss_section_route_area_link 表高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
  542. 字段列表:
  543. - section_route_id (varchar(32)) - 路段路线唯一标识 [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
  544. - service_area_id (varchar(32)) - 服务区唯一标识 [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
  545. 字段补充说明:
  546. - 复合主键:section_route_id, service_area_id
  547. ## bss_business_day_data(高速公路服务区每日经营数据统计表)
  548. bss_business_day_data 表高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
  549. 字段列表:
  550. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00827DFF993D415488EA1F07CAE6C440, 00e799048b8cbb8ee758eac9c8b4b820]
  551. - version (integer) - 数据版本号 [非空] [示例: 1]
  552. - create_ts (timestamp) - 创建时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
  553. - created_by (varchar(50)) - 创建人 [示例: xingba]
  554. - update_ts (timestamp) - 更新时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
  555. - updated_by (varchar(50)) - 更新人
  556. - delete_ts (timestamp) - 删除时间
  557. - deleted_by (varchar(50)) - 删除人
  558. - oper_date (date) - 统计日期 [示例: 2023-04-01]
  559. - service_no (varchar(255)) - 服务区编码 [示例: 1028, H0501]
  560. - service_name (varchar(255)) - 服务区名称 [示例: 宜春服务区, 庐山服务区]
  561. - branch_no (varchar(255)) - 档口编码 [示例: 1, H05016]
  562. - branch_name (varchar(255)) - 档口名称 [示例: 宜春南区, 庐山鲜徕客东区]
  563. - wx (numeric(19,4)) - 微信支付金额 [示例: 4790.0000, 2523.0000]
  564. - wx_order (integer) - 微信订单数量 [示例: 253, 133]
  565. - zfb (numeric(19,4)) - 支付宝支付金额 [示例: 229.0000, 0.0000]
  566. - zf_order (integer) - 支付宝订单数量 [示例: 15, 0]
  567. - rmb (numeric(19,4)) - 现金支付金额 [示例: 1058.5000, 124.0000]
  568. - rmb_order (integer) - 现金订单数量 [示例: 56, 12]
  569. - xs (numeric(19,4)) - 行吧支付金额 [示例: 0.0000, 40.0000]
  570. - xs_order (integer) - 行吧支付订单数 [示例: 0, 1]
  571. - jd (numeric(19,4)) - 金豆支付金额 [示例: 0.0000]
  572. - jd_order (integer) - 金豆支付订单数 [示例: 0]
  573. - order_sum (integer) - 订单总数 [示例: 324, 146]
  574. - pay_sum (numeric(19,4)) - 总支付金额 [示例: 6077.5000, 2687.0000]
  575. - source_type (integer) - 数据来源类型 [示例: 1, 0, 4]
  576. 字段补充说明:
  577. - id 为主键
  578. - source_type 为枚举字段,包含取值:0、4、1、2、3
  579. ## bss_service_area(高速公路服务区基础信息表)
  580. bss_service_area 表高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
  581. 字段列表:
  582. - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
  583. - version (integer) - 数据版本号 [非空] [示例: 3, 6]
  584. - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
  585. - created_by (varchar(50)) - 创建人 [示例: admin]
  586. - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
  587. - updated_by (varchar(50)) - 更新人 [示例: admin]
  588. - delete_ts (timestamp) - 删除时间
  589. - deleted_by (varchar(50)) - 删除人 [示例: ]
  590. - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
  591. - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
  592. - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
  593. - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
  594. - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
  595. - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
  596. 字段补充说明:
  597. - id 为主键
  598. - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
  599. - service_state 为枚举字段,包含取值:开放、关闭、上传数据
  600. ## bss_section_route(路段路线信息表)
  601. bss_section_route 表路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
  602. 字段列表:
  603. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 04ri3j67a806uw2c6o6dwdtz4knexczh, 0g5mnefxxtukql2cq6acul7phgskowy7]
  604. - version (integer) - 数据版本号 [非空] [示例: 1, 0]
  605. - create_ts (timestamp) - 创建时间 [示例: 2021-10-29 19:43:50, 2022-03-04 16:07:16]
  606. - created_by (varchar(50)) - 创建人 [示例: admin]
  607. - update_ts (timestamp) - 更新时间
  608. - updated_by (varchar(50)) - 更新人
  609. - delete_ts (timestamp) - 删除时间
  610. - deleted_by (varchar(50)) - 删除人
  611. - section_name (varchar(255)) - 路段名称 [示例: 昌栗, 昌宁]
  612. - route_name (varchar(255)) - 路线名称 [示例: 昌栗, 昌韶]
  613. - code (varchar(255)) - 路段编号 [示例: SR0001, SR0002]
  614. 字段补充说明:
  615. - id 为主键
  616. - created_by 为枚举字段,包含取值:admin
  617. ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
  618. bss_car_day_count 表高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
  619. 字段列表:
  620. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00022c1c99ff11ec86d4fa163ec0f8fc, 00022caa99ff11ec86d4fa163ec0f8fc]
  621. - version (integer) - 数据版本号 [非空] [示例: 1]
  622. - create_ts (timestamp) - 创建时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
  623. - created_by (varchar(50)) - 创建人
  624. - update_ts (timestamp) - 更新时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
  625. - updated_by (varchar(50)) - 更新人
  626. - delete_ts (timestamp) - 删除时间
  627. - deleted_by (varchar(50)) - 删除人
  628. - customer_count (bigint) - 车辆数量 [示例: 1114, 295]
  629. - car_type (varchar(100)) - 车辆类别 [示例: 其他]
  630. - count_date (date) - 统计日期 [示例: 2022-03-02, 2022-02-02]
  631. - service_area_id (varchar(32)) - 服务区ID [示例: 17461166e7fa3ecda03534a5795ce985, 81f4eb731fb0728aef17ae61f1f1daef]
  632. 字段补充说明:
  633. - id 为主键
  634. - car_type 为枚举字段,包含取值:其他、危化品、城际、过境
  635. ===Response Guidelines
  636. **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
  637. 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
  638. 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
  639. 3. If the provided context is insufficient, please explain why it can't be generated.
  640. 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
  641. - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
  642. interpret it as 'How many dining stalls does Nancheng Service Area have?'
  643. 5. Please use the most relevant table(s).
  644. 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
  645. 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
  646. 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
  647. 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
  648. - Every column MUST use AS with a Chinese alias
  649. - Raw column names without aliases are NOT acceptable
  650. - Examples:
  651. * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
  652. * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
  653. * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
  654. - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
  655. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  656. user_content: 最近一周哪个服务区总车流量最高?取前5名。
  657. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name AS 服务区名称, SUM(c.customer_count) AS 总车流量 FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - 7 AND c.delete_ts IS NULL AND s.delete_ts IS NULL GROUP BY s.service_area_name ORDER BY 总车流量 DESC LIMIT 5;
  658. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  659. user_content: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。
  660. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sr.route_name AS 路线名称, COUNT(DISTINCT link.service_area_id) AS 服务区数量 FROM bss_section_route sr JOIN bss_section_route_area_link link ON sr.id = link.section_route_id WHERE sr.delete_ts IS NULL GROUP BY sr.route_name ORDER BY 服务区数量 DESC;
  661. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  662. user_content: 找出2023年4月平均每日订单数最高的服务区TOP3?
  663. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT service_name AS 服务区名称, AVG(order_sum) AS 日均订单数 FROM bss_business_day_data WHERE oper_date BETWEEN '2023-04-01' AND '2023-04-30' AND delete_ts IS NULL GROUP BY service_name ORDER BY 日均订单数 DESC LIMIT 3;
  664. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  665. user_content: 请问系统中哪个服务区档口最多?
  666. 2025-07-22 20:45:57 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
  667. 2025-07-22 20:45:57 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
  668. Using model qwen-plus-latest for 2957.0 tokens (approx)
  669. 2025-07-22 20:45:57 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
  670. 2025-07-22 20:45:57 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
  671. 2025-07-22 20:46:00 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT service_name AS 服务区名称, COUNT(DISTINCT branch_no) AS 档口数量 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name ORDER BY 档口数量 DESC LIMIT 1;
  672. 2025-07-22 20:46:00 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT service_name AS 服务区名称, COUNT(DISTINCT branch_no) AS 档口数量 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name ORDER BY 档口数量 DESC LIMIT 1;
  673. 2025-07-22 20:46:00 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
  674. SELECT service_name AS 服务区名称, COUNT(DISTINCT branch_no) AS 档口数量 FROM bss_business_day_data WHERE delete_ts IS NULL GROUP BY service_name ORDER BY 档口数量 DESC LIMIT 1;
  675. 2025-07-22 20:54:14 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: Previous conversation context:
  676. human: 请问系统中哪个服务区档口最多?
  677. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  678. Current user question:
  679. human: 请问这个服务区有几个餐饮档口?
  680. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  681. 2025-07-22 20:54:16 [DEBUG] [vanna.EmbeddingFunction] embedding_function.py:169 - 成功生成embedding向量,维度: 1024
  682. 2025-07-22 20:54:19 [DEBUG] [vanna.EmbeddingFunction] embedding_function.py:169 - 成功生成embedding向量,维度: 1024
  683. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。 | similarity: 0.6985
  684. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)? | similarity: 0.6528
  685. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近一周哪个服务区总车流量最高?取前5名。 | similarity: 0.6383
  686. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月1日各服务区总收入排名前5的明细(包含订单总数)? | similarity: 0.636
  687. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 找出2023年4月平均每日订单数最高的服务区TOP3? | similarity: 0.6116
  688. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 计算每个服务区的“状态影响指数”=日均营收 × 平均车流量,并按此指数排序TOP 10? | similarity: 0.6106
  689. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
  690. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 2, 强制保留: 1)
  691. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.6985 ✓
  692. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.6528 ✓
  693. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.6383 ✗
  694. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日经营数据统计表
  695. -- 描述: 高速公路服务区每日经营数据统计表,记... | similarity: 0.6253
  696. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路路线与服务区关联表
  697. -- 描述: 高速公路路线与服务区关联表,用于管理各路段... | similarity: 0.5987
  698. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区基础信息表
  699. -- 描述: 高速公路服务区基础信息表,存储服务区名称、编... | similarity: 0.5917
  700. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区信息映射表
  701. -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与... | similarity: 0.574
  702. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线信息表
  703. -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速... | similarity: 0.5615
  704. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日车辆流量统计表
  705. -- 描述: 高速公路服务区每日车辆流量统计表,记... | similarity: 0.5517
  706. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
  707. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
  708. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.6253 ✓
  709. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5987 ✓
  710. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5917 ✓
  711. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.574 ✓
  712. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.5615 ✓
  713. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.5517 ✓
  714. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_business_day_data(高速公路服务区每日经营数据统计表)
  715. bss_bus... | similarity: 0.6161
  716. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area_mapper(服务区信息映射表)
  717. bss_service_a... | similarity: 0.6125
  718. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(高速公路服务区基础信息表)
  719. bss_service_area... | similarity: 0.6007
  720. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(高速公路路线与服务区关联表)
  721. bss_... | similarity: 0.5907
  722. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
  723. bss_car_day... | similarity: 0.5816
  724. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route(路段路线信息表)
  725. bss_section_route 表路... | similarity: 0.5589
  726. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
  727. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
  728. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6161 ✓
  729. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.6125 ✓
  730. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.6007 ✓
  731. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5907 ✓
  732. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5816 ✓
  733. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5589 ✓
  734. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: Previous conversation context:
  735. human: 请问系统中哪个服务区档口最多?
  736. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  737. Current user question:
  738. human: 请问这个服务区有几个餐饮档口?
  739. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  740. 2025-07-22 20:54:19 [WARNING] [vanna.BaseLLMChat] pgvector.py:666 - 向量查询未找到任何相关的错误SQL示例,问题: Previous conversation context:
  741. human: 请问系统中哪个服务区档口最多?
  742. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  743. Current user question:
  744. human: 请问这个服务区有几个餐饮档口?
  745. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  746. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
  747. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
  748. Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
  749. ===Tables
  750. -- 中文名: 高速公路服务区每日经营数据统计表
  751. -- 描述: 高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
  752. create table public.bss_business_day_data (
  753. id varchar(32) not null -- 主键ID,主键,
  754. version integer not null -- 数据版本号,
  755. create_ts timestamp -- 创建时间,
  756. created_by varchar(50) -- 创建人,
  757. update_ts timestamp -- 更新时间,
  758. updated_by varchar(50) -- 更新人,
  759. delete_ts timestamp -- 删除时间,
  760. deleted_by varchar(50) -- 删除人,
  761. oper_date date -- 统计日期,
  762. service_no varchar(255) -- 服务区编码,
  763. service_name varchar(255) -- 服务区名称,
  764. branch_no varchar(255) -- 档口编码,
  765. branch_name varchar(255) -- 档口名称,
  766. wx numeric(19,4) -- 微信支付金额,
  767. wx_order integer -- 微信订单数量,
  768. zfb numeric(19,4) -- 支付宝支付金额,
  769. zf_order integer -- 支付宝订单数量,
  770. rmb numeric(19,4) -- 现金支付金额,
  771. rmb_order integer -- 现金订单数量,
  772. xs numeric(19,4) -- 行吧支付金额,
  773. xs_order integer -- 行吧支付订单数,
  774. jd numeric(19,4) -- 金豆支付金额,
  775. jd_order integer -- 金豆支付订单数,
  776. order_sum integer -- 订单总数,
  777. pay_sum numeric(19,4) -- 总支付金额,
  778. source_type integer -- 数据来源类型,
  779. primary key (id)
  780. )
  781. -- 中文名: 高速公路路线与服务区关联表
  782. -- 描述: 高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
  783. create table public.bss_section_route_area_link (
  784. section_route_id varchar(32) not null -- 路段路线唯一标识,主键,
  785. service_area_id varchar(32) not null -- 服务区唯一标识,主键,
  786. primary key (section_route_id, service_area_id)
  787. )
  788. -- 中文名: 高速公路服务区基础信息表
  789. -- 描述: 高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
  790. create table public.bss_service_area (
  791. id varchar(32) not null -- 唯一标识符,主键,
  792. version integer not null -- 数据版本号,
  793. create_ts timestamp -- 创建时间,
  794. created_by varchar(50) -- 创建人,
  795. update_ts timestamp -- 更新时间,
  796. updated_by varchar(50) -- 更新人,
  797. delete_ts timestamp -- 删除时间,
  798. deleted_by varchar(50) -- 删除人,
  799. service_area_name varchar(255) -- 服务区名称,
  800. service_area_no varchar(255) -- 服务区编码,
  801. company_id varchar(32) -- 所属公司ID,
  802. service_position varchar(255) -- 经纬度坐标,
  803. service_area_type varchar(50) -- 服务区类型,
  804. service_state varchar(50) -- 运营状态,
  805. primary key (id)
  806. )
  807. -- 中文名: 服务区信息映射表
  808. -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
  809. create table public.bss_service_area_mapper (
  810. id varchar(32) not null -- 唯一标识符,主键,
  811. version integer not null -- 数据版本号,
  812. create_ts timestamp -- 创建时间,
  813. created_by varchar(50) -- 创建人,
  814. update_ts timestamp -- 更新时间,
  815. updated_by varchar(50) -- 更新人,
  816. delete_ts timestamp -- 删除时间,
  817. deleted_by varchar(50) -- 删除人,
  818. service_name varchar(255) -- 服务区名称,
  819. service_no varchar(255) -- 服务区编码,
  820. service_area_id varchar(32) -- 服务区业务ID,
  821. source_system_type varchar(50) -- 数据来源系统,
  822. source_type integer -- 来源系统类型ID,
  823. primary key (id)
  824. )
  825. -- 中文名: 路段路线信息表
  826. -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
  827. create table public.bss_section_route (
  828. id varchar(32) not null -- 主键ID,主键,
  829. version integer not null -- 数据版本号,
  830. create_ts timestamp -- 创建时间,
  831. created_by varchar(50) -- 创建人,
  832. update_ts timestamp -- 更新时间,
  833. updated_by varchar(50) -- 更新人,
  834. delete_ts timestamp -- 删除时间,
  835. deleted_by varchar(50) -- 删除人,
  836. section_name varchar(255) -- 路段名称,
  837. route_name varchar(255) -- 路线名称,
  838. code varchar(255) -- 路段编号,
  839. primary key (id)
  840. )
  841. -- 中文名: 高速公路服务区每日车辆流量统计表
  842. -- 描述: 高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
  843. create table public.bss_car_day_count (
  844. id varchar(32) not null -- 主键ID,主键,
  845. version integer not null -- 数据版本号,
  846. create_ts timestamp -- 创建时间,
  847. created_by varchar(50) -- 创建人,
  848. update_ts timestamp -- 更新时间,
  849. updated_by varchar(50) -- 更新人,
  850. delete_ts timestamp -- 删除时间,
  851. deleted_by varchar(50) -- 删除人,
  852. customer_count bigint -- 车辆数量,
  853. car_type varchar(100) -- 车辆类别,
  854. count_date date -- 统计日期,
  855. service_area_id varchar(32) -- 服务区ID,
  856. primary key (id)
  857. )
  858. ===Additional Context
  859. ## bss_business_day_data(高速公路服务区每日经营数据统计表)
  860. bss_business_day_data 表高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
  861. 字段列表:
  862. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00827DFF993D415488EA1F07CAE6C440, 00e799048b8cbb8ee758eac9c8b4b820]
  863. - version (integer) - 数据版本号 [非空] [示例: 1]
  864. - create_ts (timestamp) - 创建时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
  865. - created_by (varchar(50)) - 创建人 [示例: xingba]
  866. - update_ts (timestamp) - 更新时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
  867. - updated_by (varchar(50)) - 更新人
  868. - delete_ts (timestamp) - 删除时间
  869. - deleted_by (varchar(50)) - 删除人
  870. - oper_date (date) - 统计日期 [示例: 2023-04-01]
  871. - service_no (varchar(255)) - 服务区编码 [示例: 1028, H0501]
  872. - service_name (varchar(255)) - 服务区名称 [示例: 宜春服务区, 庐山服务区]
  873. - branch_no (varchar(255)) - 档口编码 [示例: 1, H05016]
  874. - branch_name (varchar(255)) - 档口名称 [示例: 宜春南区, 庐山鲜徕客东区]
  875. - wx (numeric(19,4)) - 微信支付金额 [示例: 4790.0000, 2523.0000]
  876. - wx_order (integer) - 微信订单数量 [示例: 253, 133]
  877. - zfb (numeric(19,4)) - 支付宝支付金额 [示例: 229.0000, 0.0000]
  878. - zf_order (integer) - 支付宝订单数量 [示例: 15, 0]
  879. - rmb (numeric(19,4)) - 现金支付金额 [示例: 1058.5000, 124.0000]
  880. - rmb_order (integer) - 现金订单数量 [示例: 56, 12]
  881. - xs (numeric(19,4)) - 行吧支付金额 [示例: 0.0000, 40.0000]
  882. - xs_order (integer) - 行吧支付订单数 [示例: 0, 1]
  883. - jd (numeric(19,4)) - 金豆支付金额 [示例: 0.0000]
  884. - jd_order (integer) - 金豆支付订单数 [示例: 0]
  885. - order_sum (integer) - 订单总数 [示例: 324, 146]
  886. - pay_sum (numeric(19,4)) - 总支付金额 [示例: 6077.5000, 2687.0000]
  887. - source_type (integer) - 数据来源类型 [示例: 1, 0, 4]
  888. 字段补充说明:
  889. - id 为主键
  890. - source_type 为枚举字段,包含取值:0、4、1、2、3
  891. ## bss_service_area_mapper(服务区信息映射表)
  892. bss_service_area_mapper 表服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
  893. 字段列表:
  894. - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 00e1e893909211ed8ee6fa163eaf653f, 013867f5962211ed8ee6fa163eaf653f]
  895. - version (integer) - 数据版本号 [非空] [示例: 1]
  896. - create_ts (timestamp) - 创建时间 [示例: 2023-01-10 10:54:03, 2023-01-17 12:47:29]
  897. - created_by (varchar(50)) - 创建人 [示例: admin]
  898. - update_ts (timestamp) - 更新时间 [示例: 2023-01-10 10:54:07, 2023-01-17 12:47:32]
  899. - updated_by (varchar(50)) - 更新人
  900. - delete_ts (timestamp) - 删除时间
  901. - deleted_by (varchar(50)) - 删除人
  902. - service_name (varchar(255)) - 服务区名称 [示例: 信丰西服务区, 南康北服务区]
  903. - service_no (varchar(255)) - 服务区编码 [示例: 1067, 1062]
  904. - service_area_id (varchar(32)) - 服务区业务ID [示例: 97cd6cd516a551409a4d453a58f9e170, fdbdd042962011ed8ee6fa163eaf653f]
  905. - source_system_type (varchar(50)) - 数据来源系统 [示例: 驿美, 驿购]
  906. - source_type (integer) - 来源系统类型ID [示例: 3, 1]
  907. 字段补充说明:
  908. - id 为主键
  909. - source_system_type 为枚举字段,包含取值:司乘管理、商业管理、驿购、驿美、手工录入
  910. - source_type 为枚举字段,包含取值:5、0、1、3、4
  911. ## bss_service_area(高速公路服务区基础信息表)
  912. bss_service_area 表高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
  913. 字段列表:
  914. - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
  915. - version (integer) - 数据版本号 [非空] [示例: 3, 6]
  916. - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
  917. - created_by (varchar(50)) - 创建人 [示例: admin]
  918. - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
  919. - updated_by (varchar(50)) - 更新人 [示例: admin]
  920. - delete_ts (timestamp) - 删除时间
  921. - deleted_by (varchar(50)) - 删除人 [示例: ]
  922. - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
  923. - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
  924. - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
  925. - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
  926. - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
  927. - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
  928. 字段补充说明:
  929. - id 为主键
  930. - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
  931. - service_state 为枚举字段,包含取值:开放、关闭、上传数据
  932. ## bss_section_route_area_link(高速公路路线与服务区关联表)
  933. bss_section_route_area_link 表高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
  934. 字段列表:
  935. - section_route_id (varchar(32)) - 路段路线唯一标识 [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
  936. - service_area_id (varchar(32)) - 服务区唯一标识 [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
  937. 字段补充说明:
  938. - 复合主键:section_route_id, service_area_id
  939. ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
  940. bss_car_day_count 表高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
  941. 字段列表:
  942. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00022c1c99ff11ec86d4fa163ec0f8fc, 00022caa99ff11ec86d4fa163ec0f8fc]
  943. - version (integer) - 数据版本号 [非空] [示例: 1]
  944. - create_ts (timestamp) - 创建时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
  945. - created_by (varchar(50)) - 创建人
  946. - update_ts (timestamp) - 更新时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
  947. - updated_by (varchar(50)) - 更新人
  948. - delete_ts (timestamp) - 删除时间
  949. - deleted_by (varchar(50)) - 删除人
  950. - customer_count (bigint) - 车辆数量 [示例: 1114, 295]
  951. - car_type (varchar(100)) - 车辆类别 [示例: 其他]
  952. - count_date (date) - 统计日期 [示例: 2022-03-02, 2022-02-02]
  953. - service_area_id (varchar(32)) - 服务区ID [示例: 17461166e7fa3ecda03534a5795ce985, 81f4eb731fb0728aef17ae61f1f1daef]
  954. 字段补充说明:
  955. - id 为主键
  956. - car_type 为枚举字段,包含取值:其他、危化品、城际、过境
  957. ## bss_section_route(路段路线信息表)
  958. bss_section_route 表路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
  959. 字段列表:
  960. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 04ri3j67a806uw2c6o6dwdtz4knexczh, 0g5mnefxxtukql2cq6acul7phgskowy7]
  961. - version (integer) - 数据版本号 [非空] [示例: 1, 0]
  962. - create_ts (timestamp) - 创建时间 [示例: 2021-10-29 19:43:50, 2022-03-04 16:07:16]
  963. - created_by (varchar(50)) - 创建人 [示例: admin]
  964. - update_ts (timestamp) - 更新时间
  965. - updated_by (varchar(50)) - 更新人
  966. - delete_ts (timestamp) - 删除时间
  967. - deleted_by (varchar(50)) - 删除人
  968. - section_name (varchar(255)) - 路段名称 [示例: 昌栗, 昌宁]
  969. - route_name (varchar(255)) - 路线名称 [示例: 昌栗, 昌韶]
  970. - code (varchar(255)) - 路段编号 [示例: SR0001, SR0002]
  971. 字段补充说明:
  972. - id 为主键
  973. - created_by 为枚举字段,包含取值:admin
  974. ===Response Guidelines
  975. **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
  976. 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
  977. 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
  978. 3. If the provided context is insufficient, please explain why it can't be generated.
  979. 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
  980. - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
  981. interpret it as 'How many dining stalls does Nancheng Service Area have?'
  982. 5. Please use the most relevant table(s).
  983. 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
  984. 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
  985. 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
  986. 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
  987. - Every column MUST use AS with a Chinese alias
  988. - Raw column names without aliases are NOT acceptable
  989. - Examples:
  990. * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
  991. * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
  992. * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
  993. - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
  994. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  995. user_content: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。
  996. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sr.route_name AS 路线名称, COUNT(DISTINCT link.service_area_id) AS 服务区数量 FROM bss_section_route sr JOIN bss_section_route_area_link link ON sr.id = link.section_route_id WHERE sr.delete_ts IS NULL GROUP BY sr.route_name ORDER BY 服务区数量 DESC;
  997. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  998. user_content: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)?
  999. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT branch_name AS 档口名称, ROUND(SUM(pay_sum)::numeric, 2) AS 收入总额 FROM bss_business_day_data WHERE service_name = '庐山服务区' AND oper_date BETWEEN '2023-04-01' AND '2023-04-30' AND delete_ts IS NULL GROUP BY branch_name ORDER BY 收入总额 DESC LIMIT 3;
  1000. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  1001. user_content: 最近一周哪个服务区总车流量最高?取前5名。
  1002. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name AS 服务区名称, SUM(c.customer_count) AS 总车流量 FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - 7 AND c.delete_ts IS NULL AND s.delete_ts IS NULL GROUP BY s.service_area_name ORDER BY 总车流量 DESC LIMIT 5;
  1003. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  1004. user_content: Previous conversation context:
  1005. human: 请问系统中哪个服务区档口最多?
  1006. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  1007. Current user question:
  1008. human: 请问这个服务区有几个餐饮档口?
  1009. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  1010. 2025-07-22 20:54:19 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
  1011. 2025-07-22 20:54:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
  1012. Using model qwen-plus-latest for 3195.75 tokens (approx)
  1013. 2025-07-22 20:54:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
  1014. 2025-07-22 20:54:19 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
  1015. 2025-07-22 20:54:23 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT
  1016. service_name AS 服务区名称,
  1017. COUNT(*) AS 餐饮档口数量
  1018. FROM
  1019. bss_business_day_data
  1020. WHERE
  1021. service_name = '南城服务区'
  1022. AND branch_name LIKE '%餐饮%'
  1023. AND delete_ts IS NULL
  1024. GROUP BY
  1025. serv...
  1026. 2025-07-22 20:54:23 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT
  1027. service_name AS 服务区名称,
  1028. COUNT(*) AS 餐饮档口数量
  1029. FROM
  1030. bss_business_day_data
  1031. WHERE
  1032. service_name = '南城服务区'
  1033. AND branch_name LIKE '%餐饮%'
  1034. AND delete_ts IS NULL
  1035. GROUP BY
  1036. service_name;
  1037. 2025-07-22 20:54:23 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
  1038. SELECT
  1039. service_name AS 服务区名称,
  1040. COUNT(*) AS 餐饮档口数量
  1041. FROM
  1042. bss_business_day_data
  1043. WHERE
  1044. service_name = '南城服务区'
  1045. AND branch_name LIKE '%餐饮%'
  1046. AND delete_ts IS NULL
  1047. GROUP BY
  1048. service_name;
  1049. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:270 - 尝试为问题生成SQL: Previous conversation context:
  1050. human: 请问系统中哪个服务区档口最多?
  1051. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  1052. Current user question:
  1053. human: 请问这个服务区有几个餐饮档口?
  1054. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  1055. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。 | similarity: 0.6985
  1056. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)? | similarity: 0.6528
  1057. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 最近一周哪个服务区总车流量最高?取前5名。 | similarity: 0.6383
  1058. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 查询2023年4月1日各服务区总收入排名前5的明细(包含订单总数)? | similarity: 0.636
  1059. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 找出2023年4月平均每日订单数最高的服务区TOP3? | similarity: 0.6116
  1060. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:153 - SQL Match: 计算每个服务区的“状态影响指数”=日均营收 × 平均车流量,并按此指数排序TOP 10? | similarity: 0.6106
  1061. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - SQL 阈值过滤: 总数=6, 阈值=0.65, 最少保留=3
  1062. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:348 - SQL 过滤结果: 保留 3 条, 过滤掉 3 条 (满足阈值: 2, 强制保留: 1)
  1063. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 1: similarity=0.6985 ✓
  1064. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 2: similarity=0.6528 ✓
  1065. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - SQL 保留 3: similarity=0.6383 ✗
  1066. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日经营数据统计表
  1067. -- 描述: 高速公路服务区每日经营数据统计表,记... | similarity: 0.6253
  1068. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路路线与服务区关联表
  1069. -- 描述: 高速公路路线与服务区关联表,用于管理各路段... | similarity: 0.5987
  1070. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区基础信息表
  1071. -- 描述: 高速公路服务区基础信息表,存储服务区名称、编... | similarity: 0.5917
  1072. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 服务区信息映射表
  1073. -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与... | similarity: 0.574
  1074. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 路段路线信息表
  1075. -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速... | similarity: 0.5615
  1076. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:210 - DDL Match: -- 中文名: 高速公路服务区每日车辆流量统计表
  1077. -- 描述: 高速公路服务区每日车辆流量统计表,记... | similarity: 0.5517
  1078. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DDL 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
  1079. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DDL 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
  1080. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 1: similarity=0.6253 ✓
  1081. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 2: similarity=0.5987 ✓
  1082. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 3: similarity=0.5917 ✓
  1083. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 4: similarity=0.574 ✓
  1084. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 5: similarity=0.5615 ✓
  1085. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DDL 保留 6: similarity=0.5517 ✓
  1086. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_business_day_data(高速公路服务区每日经营数据统计表)
  1087. bss_bus... | similarity: 0.6161
  1088. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area_mapper(服务区信息映射表)
  1089. bss_service_a... | similarity: 0.6125
  1090. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_service_area(高速公路服务区基础信息表)
  1091. bss_service_area... | similarity: 0.6007
  1092. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route_area_link(高速公路路线与服务区关联表)
  1093. bss_... | similarity: 0.5907
  1094. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
  1095. bss_car_day... | similarity: 0.5816
  1096. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:269 - Doc Match: ## bss_section_route(路段路线信息表)
  1097. bss_section_route 表路... | similarity: 0.5589
  1098. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:328 - DOC 阈值过滤: 总数=6, 阈值=0.5, 最少保留=3
  1099. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:341 - DOC 过滤结果: 保留 6 条, 过滤掉 0 条 (全部满足阈值)
  1100. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 1: similarity=0.6161 ✓
  1101. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 2: similarity=0.6125 ✓
  1102. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 3: similarity=0.6007 ✓
  1103. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 4: similarity=0.5907 ✓
  1104. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 5: similarity=0.5816 ✓
  1105. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] pgvector.py:354 - DOC 保留 6: similarity=0.5589 ✓
  1106. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:104 - 开始生成SQL提示词,问题: Previous conversation context:
  1107. human: 请问系统中哪个服务区档口最多?
  1108. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  1109. Current user question:
  1110. human: 请问这个服务区有几个餐饮档口?
  1111. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  1112. 2025-07-22 20:54:40 [WARNING] [vanna.BaseLLMChat] pgvector.py:666 - 向量查询未找到任何相关的错误SQL示例,问题: Previous conversation context:
  1113. human: 请问系统中哪个服务区档口最多?
  1114. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  1115. Current user question:
  1116. human: 请问这个服务区有几个餐饮档口?
  1117. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  1118. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:159 - 未找到相关的错误SQL示例
  1119. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:87 - system_content: You are a PostgreSQL expert.
  1120. Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions.
  1121. ===Tables
  1122. -- 中文名: 高速公路服务区每日经营数据统计表
  1123. -- 描述: 高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
  1124. create table public.bss_business_day_data (
  1125. id varchar(32) not null -- 主键ID,主键,
  1126. version integer not null -- 数据版本号,
  1127. create_ts timestamp -- 创建时间,
  1128. created_by varchar(50) -- 创建人,
  1129. update_ts timestamp -- 更新时间,
  1130. updated_by varchar(50) -- 更新人,
  1131. delete_ts timestamp -- 删除时间,
  1132. deleted_by varchar(50) -- 删除人,
  1133. oper_date date -- 统计日期,
  1134. service_no varchar(255) -- 服务区编码,
  1135. service_name varchar(255) -- 服务区名称,
  1136. branch_no varchar(255) -- 档口编码,
  1137. branch_name varchar(255) -- 档口名称,
  1138. wx numeric(19,4) -- 微信支付金额,
  1139. wx_order integer -- 微信订单数量,
  1140. zfb numeric(19,4) -- 支付宝支付金额,
  1141. zf_order integer -- 支付宝订单数量,
  1142. rmb numeric(19,4) -- 现金支付金额,
  1143. rmb_order integer -- 现金订单数量,
  1144. xs numeric(19,4) -- 行吧支付金额,
  1145. xs_order integer -- 行吧支付订单数,
  1146. jd numeric(19,4) -- 金豆支付金额,
  1147. jd_order integer -- 金豆支付订单数,
  1148. order_sum integer -- 订单总数,
  1149. pay_sum numeric(19,4) -- 总支付金额,
  1150. source_type integer -- 数据来源类型,
  1151. primary key (id)
  1152. )
  1153. -- 中文名: 高速公路路线与服务区关联表
  1154. -- 描述: 高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
  1155. create table public.bss_section_route_area_link (
  1156. section_route_id varchar(32) not null -- 路段路线唯一标识,主键,
  1157. service_area_id varchar(32) not null -- 服务区唯一标识,主键,
  1158. primary key (section_route_id, service_area_id)
  1159. )
  1160. -- 中文名: 高速公路服务区基础信息表
  1161. -- 描述: 高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
  1162. create table public.bss_service_area (
  1163. id varchar(32) not null -- 唯一标识符,主键,
  1164. version integer not null -- 数据版本号,
  1165. create_ts timestamp -- 创建时间,
  1166. created_by varchar(50) -- 创建人,
  1167. update_ts timestamp -- 更新时间,
  1168. updated_by varchar(50) -- 更新人,
  1169. delete_ts timestamp -- 删除时间,
  1170. deleted_by varchar(50) -- 删除人,
  1171. service_area_name varchar(255) -- 服务区名称,
  1172. service_area_no varchar(255) -- 服务区编码,
  1173. company_id varchar(32) -- 所属公司ID,
  1174. service_position varchar(255) -- 经纬度坐标,
  1175. service_area_type varchar(50) -- 服务区类型,
  1176. service_state varchar(50) -- 运营状态,
  1177. primary key (id)
  1178. )
  1179. -- 中文名: 服务区信息映射表
  1180. -- 描述: 服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
  1181. create table public.bss_service_area_mapper (
  1182. id varchar(32) not null -- 唯一标识符,主键,
  1183. version integer not null -- 数据版本号,
  1184. create_ts timestamp -- 创建时间,
  1185. created_by varchar(50) -- 创建人,
  1186. update_ts timestamp -- 更新时间,
  1187. updated_by varchar(50) -- 更新人,
  1188. delete_ts timestamp -- 删除时间,
  1189. deleted_by varchar(50) -- 删除人,
  1190. service_name varchar(255) -- 服务区名称,
  1191. service_no varchar(255) -- 服务区编码,
  1192. service_area_id varchar(32) -- 服务区业务ID,
  1193. source_system_type varchar(50) -- 数据来源系统,
  1194. source_type integer -- 来源系统类型ID,
  1195. primary key (id)
  1196. )
  1197. -- 中文名: 路段路线信息表
  1198. -- 描述: 路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
  1199. create table public.bss_section_route (
  1200. id varchar(32) not null -- 主键ID,主键,
  1201. version integer not null -- 数据版本号,
  1202. create_ts timestamp -- 创建时间,
  1203. created_by varchar(50) -- 创建人,
  1204. update_ts timestamp -- 更新时间,
  1205. updated_by varchar(50) -- 更新人,
  1206. delete_ts timestamp -- 删除时间,
  1207. deleted_by varchar(50) -- 删除人,
  1208. section_name varchar(255) -- 路段名称,
  1209. route_name varchar(255) -- 路线名称,
  1210. code varchar(255) -- 路段编号,
  1211. primary key (id)
  1212. )
  1213. -- 中文名: 高速公路服务区每日车辆流量统计表
  1214. -- 描述: 高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
  1215. create table public.bss_car_day_count (
  1216. id varchar(32) not null -- 主键ID,主键,
  1217. version integer not null -- 数据版本号,
  1218. create_ts timestamp -- 创建时间,
  1219. created_by varchar(50) -- 创建人,
  1220. update_ts timestamp -- 更新时间,
  1221. updated_by varchar(50) -- 更新人,
  1222. delete_ts timestamp -- 删除时间,
  1223. deleted_by varchar(50) -- 删除人,
  1224. customer_count bigint -- 车辆数量,
  1225. car_type varchar(100) -- 车辆类别,
  1226. count_date date -- 统计日期,
  1227. service_area_id varchar(32) -- 服务区ID,
  1228. primary key (id)
  1229. )
  1230. ===Additional Context
  1231. ## bss_business_day_data(高速公路服务区每日经营数据统计表)
  1232. bss_business_day_data 表高速公路服务区每日经营数据统计表,记录各服务区按日维度的业务指标及操作信息。
  1233. 字段列表:
  1234. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00827DFF993D415488EA1F07CAE6C440, 00e799048b8cbb8ee758eac9c8b4b820]
  1235. - version (integer) - 数据版本号 [非空] [示例: 1]
  1236. - create_ts (timestamp) - 创建时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
  1237. - created_by (varchar(50)) - 创建人 [示例: xingba]
  1238. - update_ts (timestamp) - 更新时间 [示例: 2023-04-02 08:31:51, 2023-04-02 02:30:08]
  1239. - updated_by (varchar(50)) - 更新人
  1240. - delete_ts (timestamp) - 删除时间
  1241. - deleted_by (varchar(50)) - 删除人
  1242. - oper_date (date) - 统计日期 [示例: 2023-04-01]
  1243. - service_no (varchar(255)) - 服务区编码 [示例: 1028, H0501]
  1244. - service_name (varchar(255)) - 服务区名称 [示例: 宜春服务区, 庐山服务区]
  1245. - branch_no (varchar(255)) - 档口编码 [示例: 1, H05016]
  1246. - branch_name (varchar(255)) - 档口名称 [示例: 宜春南区, 庐山鲜徕客东区]
  1247. - wx (numeric(19,4)) - 微信支付金额 [示例: 4790.0000, 2523.0000]
  1248. - wx_order (integer) - 微信订单数量 [示例: 253, 133]
  1249. - zfb (numeric(19,4)) - 支付宝支付金额 [示例: 229.0000, 0.0000]
  1250. - zf_order (integer) - 支付宝订单数量 [示例: 15, 0]
  1251. - rmb (numeric(19,4)) - 现金支付金额 [示例: 1058.5000, 124.0000]
  1252. - rmb_order (integer) - 现金订单数量 [示例: 56, 12]
  1253. - xs (numeric(19,4)) - 行吧支付金额 [示例: 0.0000, 40.0000]
  1254. - xs_order (integer) - 行吧支付订单数 [示例: 0, 1]
  1255. - jd (numeric(19,4)) - 金豆支付金额 [示例: 0.0000]
  1256. - jd_order (integer) - 金豆支付订单数 [示例: 0]
  1257. - order_sum (integer) - 订单总数 [示例: 324, 146]
  1258. - pay_sum (numeric(19,4)) - 总支付金额 [示例: 6077.5000, 2687.0000]
  1259. - source_type (integer) - 数据来源类型 [示例: 1, 0, 4]
  1260. 字段补充说明:
  1261. - id 为主键
  1262. - source_type 为枚举字段,包含取值:0、4、1、2、3
  1263. ## bss_service_area_mapper(服务区信息映射表)
  1264. bss_service_area_mapper 表服务区信息映射表,用于管理高速公路上各服务区的编码与名称对应关系。
  1265. 字段列表:
  1266. - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 00e1e893909211ed8ee6fa163eaf653f, 013867f5962211ed8ee6fa163eaf653f]
  1267. - version (integer) - 数据版本号 [非空] [示例: 1]
  1268. - create_ts (timestamp) - 创建时间 [示例: 2023-01-10 10:54:03, 2023-01-17 12:47:29]
  1269. - created_by (varchar(50)) - 创建人 [示例: admin]
  1270. - update_ts (timestamp) - 更新时间 [示例: 2023-01-10 10:54:07, 2023-01-17 12:47:32]
  1271. - updated_by (varchar(50)) - 更新人
  1272. - delete_ts (timestamp) - 删除时间
  1273. - deleted_by (varchar(50)) - 删除人
  1274. - service_name (varchar(255)) - 服务区名称 [示例: 信丰西服务区, 南康北服务区]
  1275. - service_no (varchar(255)) - 服务区编码 [示例: 1067, 1062]
  1276. - service_area_id (varchar(32)) - 服务区业务ID [示例: 97cd6cd516a551409a4d453a58f9e170, fdbdd042962011ed8ee6fa163eaf653f]
  1277. - source_system_type (varchar(50)) - 数据来源系统 [示例: 驿美, 驿购]
  1278. - source_type (integer) - 来源系统类型ID [示例: 3, 1]
  1279. 字段补充说明:
  1280. - id 为主键
  1281. - source_system_type 为枚举字段,包含取值:司乘管理、商业管理、驿购、驿美、手工录入
  1282. - source_type 为枚举字段,包含取值:5、0、1、3、4
  1283. ## bss_service_area(高速公路服务区基础信息表)
  1284. bss_service_area 表高速公路服务区基础信息表,存储服务区名称、编码及全生命周期管理数据。
  1285. 字段列表:
  1286. - id (varchar(32)) - 唯一标识符 [主键, 非空] [示例: 0271d68ef93de9684b7ad8c7aae600b6, 08e01d7402abd1d6a4d9fdd5df855ef8]
  1287. - version (integer) - 数据版本号 [非空] [示例: 3, 6]
  1288. - create_ts (timestamp) - 创建时间 [示例: 2021-05-21 13:26:40.589000, 2021-05-20 19:51:46.314000]
  1289. - created_by (varchar(50)) - 创建人 [示例: admin]
  1290. - update_ts (timestamp) - 更新时间 [示例: 2021-07-10 15:41:28.795000, 2021-07-11 09:33:08.455000]
  1291. - updated_by (varchar(50)) - 更新人 [示例: admin]
  1292. - delete_ts (timestamp) - 删除时间
  1293. - deleted_by (varchar(50)) - 删除人 [示例: ]
  1294. - service_area_name (varchar(255)) - 服务区名称 [示例: 白鹭湖停车区, 南昌南服务区]
  1295. - service_area_no (varchar(255)) - 服务区编码 [示例: H0814, H0105]
  1296. - company_id (varchar(32)) - 所属公司ID [示例: b1629f07c8d9ac81494fbc1de61f1ea5, ee9bf1180a2b45003f96e597a4b7f15a]
  1297. - service_position (varchar(255)) - 经纬度坐标 [示例: 114.574721,26.825584, 115.910549,28.396355]
  1298. - service_area_type (varchar(50)) - 服务区类型 [示例: 信息化服务区]
  1299. - service_state (varchar(50)) - 运营状态 [示例: 开放, 关闭]
  1300. 字段补充说明:
  1301. - id 为主键
  1302. - service_area_type 为枚举字段,包含取值:信息化服务区、智能化服务区
  1303. - service_state 为枚举字段,包含取值:开放、关闭、上传数据
  1304. ## bss_section_route_area_link(高速公路路线与服务区关联表)
  1305. bss_section_route_area_link 表高速公路路线与服务区关联表,用于管理各路段所属的服务区信息。
  1306. 字段列表:
  1307. - section_route_id (varchar(32)) - 路段路线唯一标识 [主键, 非空] [示例: v8elrsfs5f7lt7jl8a6p87smfzesn3rz, hxzi2iim238e3s1eajjt1enmh9o4h3wp]
  1308. - service_area_id (varchar(32)) - 服务区唯一标识 [主键, 非空] [示例: 08e01d7402abd1d6a4d9fdd5df855ef8, 091662311d2c737029445442ff198c4c]
  1309. 字段补充说明:
  1310. - 复合主键:section_route_id, service_area_id
  1311. ## bss_car_day_count(高速公路服务区每日车辆流量统计表)
  1312. bss_car_day_count 表高速公路服务区每日车辆流量统计表,记录各类型车辆数量及变更历史。
  1313. 字段列表:
  1314. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 00022c1c99ff11ec86d4fa163ec0f8fc, 00022caa99ff11ec86d4fa163ec0f8fc]
  1315. - version (integer) - 数据版本号 [非空] [示例: 1]
  1316. - create_ts (timestamp) - 创建时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
  1317. - created_by (varchar(50)) - 创建人
  1318. - update_ts (timestamp) - 更新时间 [示例: 2022-03-02 16:01:43, 2022-02-02 14:18:55]
  1319. - updated_by (varchar(50)) - 更新人
  1320. - delete_ts (timestamp) - 删除时间
  1321. - deleted_by (varchar(50)) - 删除人
  1322. - customer_count (bigint) - 车辆数量 [示例: 1114, 295]
  1323. - car_type (varchar(100)) - 车辆类别 [示例: 其他]
  1324. - count_date (date) - 统计日期 [示例: 2022-03-02, 2022-02-02]
  1325. - service_area_id (varchar(32)) - 服务区ID [示例: 17461166e7fa3ecda03534a5795ce985, 81f4eb731fb0728aef17ae61f1f1daef]
  1326. 字段补充说明:
  1327. - id 为主键
  1328. - car_type 为枚举字段,包含取值:其他、危化品、城际、过境
  1329. ## bss_section_route(路段路线信息表)
  1330. bss_section_route 表路段路线信息表,记录服务区所属路段及路线名称,支撑高速路网运营管理。
  1331. 字段列表:
  1332. - id (varchar(32)) - 主键ID [主键, 非空] [示例: 04ri3j67a806uw2c6o6dwdtz4knexczh, 0g5mnefxxtukql2cq6acul7phgskowy7]
  1333. - version (integer) - 数据版本号 [非空] [示例: 1, 0]
  1334. - create_ts (timestamp) - 创建时间 [示例: 2021-10-29 19:43:50, 2022-03-04 16:07:16]
  1335. - created_by (varchar(50)) - 创建人 [示例: admin]
  1336. - update_ts (timestamp) - 更新时间
  1337. - updated_by (varchar(50)) - 更新人
  1338. - delete_ts (timestamp) - 删除时间
  1339. - deleted_by (varchar(50)) - 删除人
  1340. - section_name (varchar(255)) - 路段名称 [示例: 昌栗, 昌宁]
  1341. - route_name (varchar(255)) - 路线名称 [示例: 昌栗, 昌韶]
  1342. - code (varchar(255)) - 路段编号 [示例: SR0001, SR0002]
  1343. 字段补充说明:
  1344. - id 为主键
  1345. - created_by 为枚举字段,包含取值:admin
  1346. ===Response Guidelines
  1347. **IMPORTANT**: All SQL queries MUST use Chinese aliases for ALL columns in SELECT clause.
  1348. 1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question.
  1349. 2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql
  1350. 3. If the provided context is insufficient, please explain why it can't be generated.
  1351. 4. **Context Understanding**: If the question follows [CONTEXT]...[CURRENT] format, replace pronouns in [CURRENT] with specific entities from [CONTEXT].
  1352. - Example: If context mentions 'Nancheng Service Area has the most stalls', and current question is 'How many dining stalls does this service area have?',
  1353. interpret it as 'How many dining stalls does Nancheng Service Area have?'
  1354. 5. Please use the most relevant table(s).
  1355. 6. If the question has been asked and answered before, please repeat the answer exactly as it was given before.
  1356. 7. Ensure that the output SQL is PostgreSQL-compliant and executable, and free of syntax errors.
  1357. 8. Always add NULLS LAST to ORDER BY clauses to handle NULL values properly (e.g., ORDER BY total DESC NULLS LAST).
  1358. 9. **MANDATORY**: ALL columns in SELECT must have Chinese aliases. This is non-negotiable:
  1359. - Every column MUST use AS with a Chinese alias
  1360. - Raw column names without aliases are NOT acceptable
  1361. - Examples:
  1362. * CORRECT: SELECT service_name AS 服务区名称, SUM(pay_sum) AS 总收入
  1363. * WRONG: SELECT service_name, SUM(pay_sum) AS total_revenue
  1364. * WRONG: SELECT service_name AS service_area, SUM(pay_sum) AS 总收入
  1365. - Common aliases: COUNT(*) AS 数量, SUM(...) AS 总计, AVG(...) AS 平均值, MAX(...) AS 最大值, MIN(...) AS 最小值
  1366. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  1367. user_content: 统计每个路线名称下服务区的数量,并按服务区数量降序排列。
  1368. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT sr.route_name AS 路线名称, COUNT(DISTINCT link.service_area_id) AS 服务区数量 FROM bss_section_route sr JOIN bss_section_route_area_link link ON sr.id = link.section_route_id WHERE sr.delete_ts IS NULL GROUP BY sr.route_name ORDER BY 服务区数量 DESC;
  1369. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  1370. user_content: 分析庐山服务区2023年4月各档口收入占比(仅显示前3名)?
  1371. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT branch_name AS 档口名称, ROUND(SUM(pay_sum)::numeric, 2) AS 收入总额 FROM bss_business_day_data WHERE service_name = '庐山服务区' AND oper_date BETWEEN '2023-04-01' AND '2023-04-30' AND delete_ts IS NULL GROUP BY branch_name ORDER BY 收入总额 DESC LIMIT 3;
  1372. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  1373. user_content: 最近一周哪个服务区总车流量最高?取前5名。
  1374. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:97 - assistant_content: SELECT s.service_area_name AS 服务区名称, SUM(c.customer_count) AS 总车流量 FROM bss_car_day_count c JOIN bss_service_area s ON c.service_area_id = s.id WHERE c.count_date >= CURRENT_DATE - 7 AND c.delete_ts IS NULL AND s.delete_ts IS NULL GROUP BY s.service_area_name ORDER BY 总车流量 DESC LIMIT 5;
  1375. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:92 -
  1376. user_content: Previous conversation context:
  1377. human: 请问系统中哪个服务区档口最多?
  1378. ai: 根据查询结果,系统中档口数量最多的服务区是**南城服务区**,共有**38个档口**。
  1379. Current user question:
  1380. human: 请问这个服务区有几个餐饮档口?
  1381. Please analyze the conversation history to understand any references (like "this service area", "that branch", etc.) in the current question, and generate the appropriate SQL query.
  1382. 2025-07-22 20:54:40 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:70 - [Vanna] SQL Prompt: [{'role': 'system', 'content': "You are a PostgreSQL expert. \nPlease help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the respon...
  1383. 2025-07-22 20:54:40 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:115 -
  1384. Using model qwen-plus-latest for 3195.75 tokens (approx)
  1385. 2025-07-22 20:54:40 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:116 - Enable thinking: False, Stream mode: False
  1386. 2025-07-22 20:54:40 [INFO] [vanna.BaseLLMChat] qianwen_chat.py:158 - 使用非流式处理模式
  1387. 2025-07-22 20:54:48 [DEBUG] [vanna.BaseLLMChat] base_llm_chat.py:77 - [Vanna] LLM Response: SELECT
  1388. service_name AS 服务区名称,
  1389. COUNT(*) AS 餐饮档口数量
  1390. FROM
  1391. bss_business_day_data
  1392. WHERE
  1393. service_name = '南城服务区'
  1394. AND branch_name LIKE '%餐饮%'
  1395. AND delete_ts IS NULL
  1396. GROUP BY
  1397. serv...
  1398. 2025-07-22 20:54:48 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:80 - [Vanna] Extracted SQL: SELECT
  1399. service_name AS 服务区名称,
  1400. COUNT(*) AS 餐饮档口数量
  1401. FROM
  1402. bss_business_day_data
  1403. WHERE
  1404. service_name = '南城服务区'
  1405. AND branch_name LIKE '%餐饮%'
  1406. AND delete_ts IS NULL
  1407. GROUP BY
  1408. service_name;
  1409. 2025-07-22 20:54:48 [INFO] [vanna.BaseLLMChat] base_llm_chat.py:320 - 成功生成SQL:
  1410. SELECT
  1411. service_name AS 服务区名称,
  1412. COUNT(*) AS 餐饮档口数量
  1413. FROM
  1414. bss_business_day_data
  1415. WHERE
  1416. service_name = '南城服务区'
  1417. AND branch_name LIKE '%餐饮%'
  1418. AND delete_ts IS NULL
  1419. GROUP BY
  1420. service_name;