citu_app.py 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370
  1. # 给dataops 对话助手返回结果
  2. from vanna.flask import VannaFlaskApp
  3. from core.vanna_llm_factory import create_vanna_instance
  4. from flask import request, jsonify
  5. import pandas as pd
  6. import common.result as result
  7. from datetime import datetime, timedelta
  8. from common.session_aware_cache import WebSessionAwareMemoryCache
  9. from app_config import API_MAX_RETURN_ROWS, DISPLAY_SUMMARY_THINKING
  10. import re
  11. # 设置默认的最大返回行数
  12. DEFAULT_MAX_RETURN_ROWS = 200
  13. MAX_RETURN_ROWS = API_MAX_RETURN_ROWS if API_MAX_RETURN_ROWS is not None else DEFAULT_MAX_RETURN_ROWS
  14. vn = create_vanna_instance()
  15. # 创建带时间戳的缓存
  16. timestamped_cache = WebSessionAwareMemoryCache()
  17. # 实例化 VannaFlaskApp,使用自定义缓存
  18. app = VannaFlaskApp(
  19. vn,
  20. cache=timestamped_cache, # 使用带时间戳的缓存
  21. title="辞图智能数据问答平台",
  22. logo = "https://www.citupro.com/img/logo-black-2.png",
  23. subtitle="让 AI 为你写 SQL",
  24. chart=False,
  25. allow_llm_to_see_data=True,
  26. ask_results_correct=True,
  27. followup_questions=True,
  28. debug=True
  29. )
  30. def _remove_thinking_content(text: str) -> str:
  31. """
  32. 移除文本中的 <think></think> 标签及其内容
  33. 复用自 base_llm_chat.py 中的同名方法
  34. Args:
  35. text (str): 包含可能的 thinking 标签的文本
  36. Returns:
  37. str: 移除 thinking 内容后的文本
  38. """
  39. if not text:
  40. return text
  41. # 移除 <think>...</think> 标签及其内容(支持多行)
  42. # 使用 re.DOTALL 标志使 . 匹配包括换行符在内的任何字符
  43. cleaned_text = re.sub(r'<think>.*?</think>\s*', '', text, flags=re.DOTALL | re.IGNORECASE)
  44. # 移除可能的多余空行
  45. cleaned_text = re.sub(r'\n\s*\n\s*\n', '\n\n', cleaned_text)
  46. # 去除开头和结尾的空白字符
  47. cleaned_text = cleaned_text.strip()
  48. return cleaned_text
  49. # 修改ask接口,支持前端传递session_id
  50. @app.flask_app.route('/api/v0/ask', methods=['POST'])
  51. def ask_full():
  52. req = request.get_json(force=True)
  53. question = req.get("question", None)
  54. browser_session_id = req.get("session_id", None) # 前端传递的会话ID
  55. if not question:
  56. return jsonify(result.failed(message="未提供问题", code=400)), 400
  57. # 如果使用WebSessionAwareMemoryCache
  58. if hasattr(app.cache, 'generate_id_with_browser_session') and browser_session_id:
  59. # 这里需要修改vanna的ask方法来支持传递session_id
  60. # 或者预先调用generate_id来建立会话关联
  61. conversation_id = app.cache.generate_id_with_browser_session(
  62. question=question,
  63. browser_session_id=browser_session_id
  64. )
  65. try:
  66. sql, df, _ = vn.ask(
  67. question=question,
  68. print_results=False,
  69. visualize=False,
  70. allow_llm_to_see_data=True
  71. )
  72. # 关键:检查是否有LLM解释性文本(无法生成SQL的情况)
  73. if sql is None and hasattr(vn, 'last_llm_explanation') and vn.last_llm_explanation:
  74. # 根据 DISPLAY_SUMMARY_THINKING 参数决定是否移除 thinking 内容
  75. explanation_message = vn.last_llm_explanation
  76. if not DISPLAY_SUMMARY_THINKING:
  77. explanation_message = _remove_thinking_content(explanation_message)
  78. print(f"[DEBUG] 隐藏thinking内容 - 原始长度: {len(vn.last_llm_explanation)}, 处理后长度: {len(explanation_message)}")
  79. # 在解释性文本末尾添加提示语
  80. explanation_message = explanation_message + "请尝试提问其它问题。"
  81. # 使用 result.failed 返回,success为false,但在message中包含LLM友好的解释
  82. return jsonify(result.failed(
  83. message=explanation_message, # 处理后的解释性文本
  84. code=400, # 业务逻辑错误,使用400
  85. data={
  86. "sql": None,
  87. "rows": [],
  88. "columns": [],
  89. "summary": None,
  90. "conversation_id": conversation_id if 'conversation_id' in locals() else None,
  91. "session_id": browser_session_id
  92. }
  93. )), 200 # HTTP状态码仍为200,因为请求本身成功处理了
  94. # 如果sql为None但没有解释性文本,返回通用错误
  95. if sql is None:
  96. return jsonify(result.failed(
  97. message="无法生成SQL查询,请检查问题描述或数据表结构",
  98. code=400,
  99. data={
  100. "sql": None,
  101. "rows": [],
  102. "columns": [],
  103. "summary": None,
  104. "conversation_id": conversation_id if 'conversation_id' in locals() else None,
  105. "session_id": browser_session_id
  106. }
  107. )), 200
  108. # 正常SQL流程
  109. rows, columns = [], []
  110. summary = None
  111. if isinstance(df, pd.DataFrame) and not df.empty:
  112. rows = df.head(MAX_RETURN_ROWS).to_dict(orient="records")
  113. columns = list(df.columns)
  114. # 生成数据摘要
  115. try:
  116. summary = vn.generate_summary(question=question, df=df)
  117. print(f"[INFO] 成功生成摘要: {summary}")
  118. except Exception as e:
  119. print(f"[WARNING] 生成摘要失败: {str(e)}")
  120. summary = None
  121. return jsonify(result.success(data={
  122. "sql": sql,
  123. "rows": rows,
  124. "columns": columns,
  125. "summary": summary, # 添加摘要到返回结果
  126. "conversation_id": conversation_id if 'conversation_id' in locals() else None,
  127. "session_id": browser_session_id
  128. }))
  129. except Exception as e:
  130. print(f"[ERROR] ask_full执行失败: {str(e)}")
  131. # 即使发生异常,也检查是否有业务层面的解释
  132. if hasattr(vn, 'last_llm_explanation') and vn.last_llm_explanation:
  133. # 根据 DISPLAY_SUMMARY_THINKING 参数决定是否移除 thinking 内容
  134. explanation_message = vn.last_llm_explanation
  135. if not DISPLAY_SUMMARY_THINKING:
  136. explanation_message = _remove_thinking_content(explanation_message)
  137. print(f"[DEBUG] 异常处理中隐藏thinking内容 - 原始长度: {len(vn.last_llm_explanation)}, 处理后长度: {len(explanation_message)}")
  138. # 在解释性文本末尾添加提示语
  139. explanation_message = explanation_message + "请尝试提问其它问题。"
  140. return jsonify(result.failed(
  141. message=explanation_message,
  142. code=400,
  143. data={
  144. "sql": None,
  145. "rows": [],
  146. "columns": [],
  147. "summary": None,
  148. "conversation_id": conversation_id if 'conversation_id' in locals() else None,
  149. "session_id": browser_session_id
  150. }
  151. )), 200
  152. else:
  153. # 技术错误,使用500错误码
  154. return jsonify(result.failed(
  155. message=f"查询处理失败: {str(e)}",
  156. code=500
  157. )), 500
  158. @app.flask_app.route('/api/v0/citu_run_sql', methods=['POST'])
  159. def citu_run_sql():
  160. req = request.get_json(force=True)
  161. sql = req.get('sql')
  162. if not sql:
  163. return jsonify(result.failed(message="未提供SQL查询", code=400)), 400
  164. try:
  165. df = vn.run_sql(sql)
  166. rows, columns = [], []
  167. if isinstance(df, pd.DataFrame) and not df.empty:
  168. rows = df.head(MAX_RETURN_ROWS).to_dict(orient="records")
  169. columns = list(df.columns)
  170. return jsonify(result.success(data={
  171. "sql": sql,
  172. "rows": rows,
  173. "columns": columns
  174. }))
  175. except Exception as e:
  176. print(f"[ERROR] citu_run_sql执行失败: {str(e)}")
  177. return jsonify(result.failed(
  178. message=f"SQL执行失败: {str(e)}",
  179. code=500
  180. )), 500
  181. @app.flask_app.route('/api/v0/ask_cached', methods=['POST'])
  182. def ask_cached():
  183. """
  184. 带缓存功能的智能查询接口
  185. 支持会话管理和结果缓存,提高查询效率
  186. """
  187. req = request.get_json(force=True)
  188. question = req.get("question", None)
  189. browser_session_id = req.get("session_id", None)
  190. if not question:
  191. return jsonify(result.failed(message="未提供问题", code=400)), 400
  192. try:
  193. # 生成conversation_id
  194. # 调试:查看generate_id的实际行为
  195. print(f"[DEBUG] 输入问题: '{question}'")
  196. conversation_id = app.cache.generate_id(question=question)
  197. print(f"[DEBUG] 生成的conversation_id: {conversation_id}")
  198. # 再次用相同问题测试
  199. conversation_id2 = app.cache.generate_id(question=question)
  200. print(f"[DEBUG] 再次生成的conversation_id: {conversation_id2}")
  201. print(f"[DEBUG] 两次ID是否相同: {conversation_id == conversation_id2}")
  202. # 检查缓存
  203. cached_sql = app.cache.get(id=conversation_id, field="sql")
  204. if cached_sql is not None:
  205. # 缓存命中
  206. print(f"[CACHE HIT] 使用缓存结果: {conversation_id}")
  207. sql = cached_sql
  208. df = app.cache.get(id=conversation_id, field="df")
  209. summary = app.cache.get(id=conversation_id, field="summary")
  210. else:
  211. # 缓存未命中,执行新查询
  212. print(f"[CACHE MISS] 执行新查询: {conversation_id}")
  213. sql, df, _ = vn.ask(
  214. question=question,
  215. print_results=False,
  216. visualize=False,
  217. allow_llm_to_see_data=True
  218. )
  219. # 检查是否有LLM解释性文本(无法生成SQL的情况)
  220. if sql is None and hasattr(vn, 'last_llm_explanation') and vn.last_llm_explanation:
  221. # 根据 DISPLAY_SUMMARY_THINKING 参数决定是否移除 thinking 内容
  222. explanation_message = vn.last_llm_explanation
  223. if not DISPLAY_SUMMARY_THINKING:
  224. explanation_message = _remove_thinking_content(explanation_message)
  225. print(f"[DEBUG] ask_cached中隐藏thinking内容 - 原始长度: {len(vn.last_llm_explanation)}, 处理后长度: {len(explanation_message)}")
  226. # 在解释性文本末尾添加提示语
  227. explanation_message = explanation_message + "请尝试用其它方式提问。"
  228. return jsonify(result.failed(
  229. message=explanation_message,
  230. code=400,
  231. data={
  232. "sql": None,
  233. "rows": [],
  234. "columns": [],
  235. "summary": None,
  236. "conversation_id": conversation_id,
  237. "session_id": browser_session_id,
  238. "cached": False
  239. }
  240. )), 200
  241. # 如果sql为None但没有解释性文本,返回通用错误
  242. if sql is None:
  243. return jsonify(result.failed(
  244. message="无法生成SQL查询,请检查问题描述或数据表结构",
  245. code=400,
  246. data={
  247. "sql": None,
  248. "rows": [],
  249. "columns": [],
  250. "summary": None,
  251. "conversation_id": conversation_id,
  252. "session_id": browser_session_id,
  253. "cached": False
  254. }
  255. )), 200
  256. # 缓存结果
  257. app.cache.set(id=conversation_id, field="question", value=question)
  258. app.cache.set(id=conversation_id, field="sql", value=sql)
  259. app.cache.set(id=conversation_id, field="df", value=df)
  260. # 生成并缓存摘要
  261. summary = None
  262. if isinstance(df, pd.DataFrame) and not df.empty:
  263. try:
  264. summary = vn.generate_summary(question=question, df=df)
  265. print(f"[INFO] 成功生成摘要: {summary}")
  266. except Exception as e:
  267. print(f"[WARNING] 生成摘要失败: {str(e)}")
  268. summary = None
  269. app.cache.set(id=conversation_id, field="summary", value=summary)
  270. # 处理返回数据
  271. rows, columns = [], []
  272. if isinstance(df, pd.DataFrame) and not df.empty:
  273. rows = df.head(MAX_RETURN_ROWS).to_dict(orient="records")
  274. columns = list(df.columns)
  275. return jsonify(result.success(data={
  276. "sql": sql,
  277. "rows": rows,
  278. "columns": columns,
  279. "summary": summary,
  280. "conversation_id": conversation_id,
  281. "session_id": browser_session_id,
  282. "cached": cached_sql is not None # 标识是否来自缓存
  283. }))
  284. except Exception as e:
  285. print(f"[ERROR] ask_cached执行失败: {str(e)}")
  286. return jsonify(result.failed(
  287. message=f"查询处理失败: {str(e)}",
  288. code=500
  289. )), 500
  290. @app.flask_app.route('/api/v0/citu_train_question_sql', methods=['POST'])
  291. def citu_train_question_sql():
  292. """
  293. 训练问题-SQL对接口
  294. 此API将接收的question/sql pair写入到training库中,用于训练和改进AI模型。
  295. 支持仅传入SQL或同时传入问题和SQL进行训练。
  296. Args:
  297. question (str, optional): 用户问题
  298. sql (str, required): 对应的SQL查询语句
  299. Returns:
  300. JSON: 包含训练ID和成功消息的响应
  301. """
  302. try:
  303. req = request.get_json(force=True)
  304. question = req.get('question')
  305. sql = req.get('sql')
  306. if not sql:
  307. return jsonify(result.failed(
  308. message="'sql' are required",
  309. code=400
  310. )), 400
  311. # 正确的调用方式:同时传递question和sql
  312. if question:
  313. training_id = vn.train(question=question, sql=sql)
  314. print(f"训练成功,训练ID为:{training_id},问题:{question},SQL:{sql}")
  315. else:
  316. training_id = vn.train(sql=sql)
  317. print(f"训练成功,训练ID为:{training_id},SQL:{sql}")
  318. return jsonify(result.success(data={
  319. "training_id": training_id,
  320. "message": "Question-SQL pair trained successfully"
  321. }))
  322. except Exception as e:
  323. return jsonify(result.failed(
  324. message=f"Training failed: {str(e)}",
  325. code=500
  326. )), 500
  327. # ============ LangGraph Agent 集成 ============
  328. # 全局Agent实例(单例模式)
  329. citu_langraph_agent = None
  330. def get_citu_langraph_agent():
  331. """获取LangGraph Agent实例(懒加载)"""
  332. global citu_langraph_agent
  333. if citu_langraph_agent is None:
  334. try:
  335. from agent.citu_agent import CituLangGraphAgent
  336. citu_langraph_agent = CituLangGraphAgent()
  337. print("[CITU_APP] LangGraph Agent实例创建成功")
  338. except Exception as e:
  339. print(f"[ERROR] LangGraph Agent实例创建失败: {str(e)}")
  340. raise
  341. return citu_langraph_agent
  342. @app.flask_app.route('/api/v0/ask_agent', methods=['POST'])
  343. def ask_agent():
  344. """
  345. 新的LangGraph Agent接口
  346. 请求格式:
  347. {
  348. "question": "用户问题",
  349. "session_id": "会话ID(可选)"
  350. }
  351. 响应格式:
  352. {
  353. "success": true/false,
  354. "code": 200,
  355. "message": "success" 或错误信息,
  356. "data": {
  357. "response": "最终回答",
  358. "type": "DATABASE/CHAT",
  359. "sql": "生成的SQL(如果是数据库查询)",
  360. "data_result": {
  361. "rows": [...],
  362. "columns": [...],
  363. "row_count": 数字
  364. },
  365. "summary": "数据摘要(如果是数据库查询)",
  366. "session_id": "会话ID",
  367. "execution_path": ["classify", "agent_database", "format_response"],
  368. "classification_info": {
  369. "confidence": 0.95,
  370. "reason": "分类原因",
  371. "method": "rule_based/llm_based"
  372. },
  373. "agent_version": "langgraph_v1"
  374. }
  375. }
  376. """
  377. req = request.get_json(force=True)
  378. question = req.get("question", None)
  379. browser_session_id = req.get("session_id", None)
  380. if not question:
  381. return jsonify(result.failed(message="未提供问题", code=400)), 400
  382. try:
  383. # 获取Agent实例
  384. agent = get_citu_langraph_agent()
  385. # 调用Agent处理问题
  386. agent_result = agent.process_question(
  387. question=question,
  388. session_id=browser_session_id
  389. )
  390. # 统一返回格式
  391. if agent_result.get("success", False):
  392. return jsonify(result.success(data={
  393. "response": agent_result.get("response", ""),
  394. "type": agent_result.get("type", "UNKNOWN"),
  395. "sql": agent_result.get("sql"),
  396. "data_result": agent_result.get("data_result"),
  397. "summary": agent_result.get("summary"),
  398. "session_id": browser_session_id,
  399. "execution_path": agent_result.get("execution_path", []),
  400. "classification_info": agent_result.get("classification_info", {}),
  401. "agent_version": "langgraph_v1",
  402. "timestamp": datetime.now().isoformat()
  403. }))
  404. else:
  405. return jsonify(result.failed(
  406. message=agent_result.get("error", "Agent处理失败"),
  407. code=agent_result.get("error_code", 500),
  408. data={
  409. "session_id": browser_session_id,
  410. "execution_path": agent_result.get("execution_path", []),
  411. "classification_info": agent_result.get("classification_info", {}),
  412. "agent_version": "langgraph_v1",
  413. "timestamp": datetime.now().isoformat()
  414. }
  415. )), 200 # HTTP 200但业务失败
  416. except Exception as e:
  417. print(f"[ERROR] ask_agent执行失败: {str(e)}")
  418. return jsonify(result.failed(
  419. message=f"Agent系统异常: {str(e)}",
  420. code=500,
  421. data={
  422. "timestamp": datetime.now().isoformat()
  423. }
  424. )), 500
  425. @app.flask_app.route('/api/v0/agent_health', methods=['GET'])
  426. def agent_health():
  427. """
  428. Agent健康检查接口
  429. 响应格式:
  430. {
  431. "success": true/false,
  432. "code": 200/503,
  433. "message": "healthy/degraded/unhealthy",
  434. "data": {
  435. "status": "healthy/degraded/unhealthy",
  436. "test_result": true/false,
  437. "workflow_compiled": true/false,
  438. "tools_count": 4,
  439. "message": "详细信息",
  440. "timestamp": "2024-01-01T12:00:00",
  441. "checks": {
  442. "agent_creation": true/false,
  443. "tools_import": true/false,
  444. "llm_connection": true/false,
  445. "classifier_ready": true/false
  446. }
  447. }
  448. }
  449. """
  450. try:
  451. # 基础健康检查
  452. health_data = {
  453. "status": "unknown",
  454. "test_result": False,
  455. "workflow_compiled": False,
  456. "tools_count": 0,
  457. "message": "",
  458. "timestamp": datetime.now().isoformat(),
  459. "checks": {
  460. "agent_creation": False,
  461. "tools_import": False,
  462. "llm_connection": False,
  463. "classifier_ready": False
  464. }
  465. }
  466. # 检查1: Agent创建
  467. try:
  468. agent = get_citu_langraph_agent()
  469. health_data["checks"]["agent_creation"] = True
  470. health_data["workflow_compiled"] = agent.workflow is not None
  471. health_data["tools_count"] = len(agent.tools) if hasattr(agent, 'tools') else 0
  472. except Exception as e:
  473. health_data["message"] = f"Agent创建失败: {str(e)}"
  474. return jsonify(result.failed(
  475. message="Agent状态: unhealthy",
  476. data=health_data,
  477. code=503
  478. )), 503
  479. # 检查2: 工具导入
  480. try:
  481. from agent.tools import TOOLS
  482. health_data["checks"]["tools_import"] = len(TOOLS) > 0
  483. except Exception as e:
  484. health_data["message"] = f"工具导入失败: {str(e)}"
  485. # 检查3: LLM连接(简单测试)
  486. try:
  487. from agent.utils import get_compatible_llm
  488. llm = get_compatible_llm()
  489. health_data["checks"]["llm_connection"] = llm is not None
  490. except Exception as e:
  491. health_data["message"] = f"LLM连接失败: {str(e)}"
  492. # 检查4: 分类器准备
  493. try:
  494. from agent.classifier import QuestionClassifier
  495. classifier = QuestionClassifier()
  496. health_data["checks"]["classifier_ready"] = True
  497. except Exception as e:
  498. health_data["message"] = f"分类器失败: {str(e)}"
  499. # 检查5: 完整流程测试(可选)
  500. try:
  501. if all(health_data["checks"].values()):
  502. test_result = agent.health_check()
  503. health_data["test_result"] = test_result.get("status") == "healthy"
  504. health_data["status"] = test_result.get("status", "unknown")
  505. health_data["message"] = test_result.get("message", "健康检查完成")
  506. else:
  507. health_data["status"] = "degraded"
  508. health_data["message"] = "部分组件异常"
  509. except Exception as e:
  510. health_data["status"] = "degraded"
  511. health_data["message"] = f"完整测试失败: {str(e)}"
  512. # 根据状态返回相应的HTTP代码
  513. if health_data["status"] == "healthy":
  514. return jsonify(result.success(data=health_data))
  515. elif health_data["status"] == "degraded":
  516. return jsonify(result.failed(
  517. message="Agent状态: degraded",
  518. data=health_data,
  519. code=503
  520. )), 503
  521. else:
  522. return jsonify(result.failed(
  523. message="Agent状态: unhealthy",
  524. data=health_data,
  525. code=503
  526. )), 503
  527. except Exception as e:
  528. print(f"[ERROR] 健康检查异常: {str(e)}")
  529. return jsonify(result.failed(
  530. message=f"健康检查失败: {str(e)}",
  531. code=500,
  532. data={
  533. "status": "error",
  534. "timestamp": datetime.now().isoformat()
  535. }
  536. )), 500
  537. # ==================== 日常管理API ====================
  538. @app.flask_app.route('/api/v0/cache_overview', methods=['GET'])
  539. def cache_overview():
  540. """日常管理:轻量概览 - 合并原cache_inspect的核心功能"""
  541. try:
  542. cache = app.cache
  543. result_data = {
  544. 'overview_summary': {
  545. 'total_conversations': 0,
  546. 'total_sessions': 0,
  547. 'query_time': datetime.now().isoformat()
  548. },
  549. 'recent_conversations': [], # 最近的对话
  550. 'session_summary': [] # 会话摘要
  551. }
  552. if hasattr(cache, 'cache') and isinstance(cache.cache, dict):
  553. result_data['overview_summary']['total_conversations'] = len(cache.cache)
  554. # 获取会话信息
  555. if hasattr(cache, 'get_all_sessions'):
  556. all_sessions = cache.get_all_sessions()
  557. result_data['overview_summary']['total_sessions'] = len(all_sessions)
  558. # 会话摘要(按最近活动排序)
  559. session_list = []
  560. for session_id, session_data in all_sessions.items():
  561. session_summary = {
  562. 'session_id': session_id,
  563. 'start_time': session_data['start_time'].isoformat(),
  564. 'conversation_count': session_data.get('conversation_count', 0),
  565. 'duration_seconds': session_data.get('session_duration_seconds', 0),
  566. 'last_activity': session_data.get('last_activity', session_data['start_time']).isoformat(),
  567. 'is_active': (datetime.now() - session_data.get('last_activity', session_data['start_time'])).total_seconds() < 1800 # 30分钟内活跃
  568. }
  569. session_list.append(session_summary)
  570. # 按最后活动时间排序
  571. session_list.sort(key=lambda x: x['last_activity'], reverse=True)
  572. result_data['session_summary'] = session_list
  573. # 最近的对话(最多显示10个)
  574. conversation_list = []
  575. for conversation_id, conversation_data in cache.cache.items():
  576. conversation_start_time = cache.conversation_start_times.get(conversation_id)
  577. conversation_info = {
  578. 'conversation_id': conversation_id,
  579. 'conversation_start_time': conversation_start_time.isoformat() if conversation_start_time else None,
  580. 'session_id': cache.conversation_to_session.get(conversation_id),
  581. 'has_question': 'question' in conversation_data,
  582. 'has_sql': 'sql' in conversation_data,
  583. 'has_data': 'df' in conversation_data and conversation_data['df'] is not None,
  584. 'question_preview': conversation_data.get('question', '')[:80] + '...' if len(conversation_data.get('question', '')) > 80 else conversation_data.get('question', ''),
  585. }
  586. # 计算对话持续时间
  587. if conversation_start_time:
  588. duration = datetime.now() - conversation_start_time
  589. conversation_info['conversation_duration_seconds'] = duration.total_seconds()
  590. conversation_list.append(conversation_info)
  591. # 按对话开始时间排序,显示最新的10个
  592. conversation_list.sort(key=lambda x: x['conversation_start_time'] or '', reverse=True)
  593. result_data['recent_conversations'] = conversation_list[:10]
  594. return jsonify(result.success(data=result_data))
  595. except Exception as e:
  596. return jsonify(result.failed(
  597. message=f"获取缓存概览失败: {str(e)}",
  598. code=500
  599. )), 500
  600. @app.flask_app.route('/api/v0/cache_stats', methods=['GET'])
  601. def cache_stats():
  602. """日常管理:统计信息 - 合并原session_stats和cache_stats功能"""
  603. try:
  604. cache = app.cache
  605. current_time = datetime.now()
  606. stats = {
  607. 'basic_stats': {
  608. 'total_sessions': len(getattr(cache, 'session_info', {})),
  609. 'total_conversations': len(getattr(cache, 'cache', {})),
  610. 'active_sessions': 0, # 最近30分钟有活动
  611. 'average_conversations_per_session': 0
  612. },
  613. 'time_distribution': {
  614. 'sessions': {
  615. 'last_1_hour': 0,
  616. 'last_6_hours': 0,
  617. 'last_24_hours': 0,
  618. 'last_7_days': 0,
  619. 'older': 0
  620. },
  621. 'conversations': {
  622. 'last_1_hour': 0,
  623. 'last_6_hours': 0,
  624. 'last_24_hours': 0,
  625. 'last_7_days': 0,
  626. 'older': 0
  627. }
  628. },
  629. 'session_details': [],
  630. 'time_ranges': {
  631. 'oldest_session': None,
  632. 'newest_session': None,
  633. 'oldest_conversation': None,
  634. 'newest_conversation': None
  635. }
  636. }
  637. # 会话统计
  638. if hasattr(cache, 'session_info'):
  639. session_times = []
  640. total_conversations = 0
  641. for session_id, session_data in cache.session_info.items():
  642. start_time = session_data['start_time']
  643. session_times.append(start_time)
  644. conversation_count = len(session_data.get('conversations', []))
  645. total_conversations += conversation_count
  646. # 检查活跃状态
  647. last_activity = session_data.get('last_activity', session_data['start_time'])
  648. if (current_time - last_activity).total_seconds() < 1800:
  649. stats['basic_stats']['active_sessions'] += 1
  650. # 时间分布统计
  651. age_hours = (current_time - start_time).total_seconds() / 3600
  652. if age_hours <= 1:
  653. stats['time_distribution']['sessions']['last_1_hour'] += 1
  654. elif age_hours <= 6:
  655. stats['time_distribution']['sessions']['last_6_hours'] += 1
  656. elif age_hours <= 24:
  657. stats['time_distribution']['sessions']['last_24_hours'] += 1
  658. elif age_hours <= 168: # 7 days
  659. stats['time_distribution']['sessions']['last_7_days'] += 1
  660. else:
  661. stats['time_distribution']['sessions']['older'] += 1
  662. # 会话详细信息
  663. session_duration = current_time - start_time
  664. stats['session_details'].append({
  665. 'session_id': session_id,
  666. 'start_time': start_time.isoformat(),
  667. 'last_activity': last_activity.isoformat(),
  668. 'conversation_count': conversation_count,
  669. 'duration_seconds': session_duration.total_seconds(),
  670. 'duration_formatted': str(session_duration),
  671. 'is_active': (current_time - last_activity).total_seconds() < 1800,
  672. 'browser_session_id': session_data.get('browser_session_id')
  673. })
  674. # 计算平均值
  675. if len(cache.session_info) > 0:
  676. stats['basic_stats']['average_conversations_per_session'] = total_conversations / len(cache.session_info)
  677. # 时间范围
  678. if session_times:
  679. stats['time_ranges']['oldest_session'] = min(session_times).isoformat()
  680. stats['time_ranges']['newest_session'] = max(session_times).isoformat()
  681. # 对话统计
  682. if hasattr(cache, 'conversation_start_times'):
  683. conversation_times = []
  684. for conv_time in cache.conversation_start_times.values():
  685. conversation_times.append(conv_time)
  686. age_hours = (current_time - conv_time).total_seconds() / 3600
  687. if age_hours <= 1:
  688. stats['time_distribution']['conversations']['last_1_hour'] += 1
  689. elif age_hours <= 6:
  690. stats['time_distribution']['conversations']['last_6_hours'] += 1
  691. elif age_hours <= 24:
  692. stats['time_distribution']['conversations']['last_24_hours'] += 1
  693. elif age_hours <= 168:
  694. stats['time_distribution']['conversations']['last_7_days'] += 1
  695. else:
  696. stats['time_distribution']['conversations']['older'] += 1
  697. if conversation_times:
  698. stats['time_ranges']['oldest_conversation'] = min(conversation_times).isoformat()
  699. stats['time_ranges']['newest_conversation'] = max(conversation_times).isoformat()
  700. # 按最近活动排序会话详情
  701. stats['session_details'].sort(key=lambda x: x['last_activity'], reverse=True)
  702. return jsonify(result.success(data=stats))
  703. except Exception as e:
  704. return jsonify(result.failed(
  705. message=f"获取缓存统计失败: {str(e)}",
  706. code=500
  707. )), 500
  708. # ==================== 高级功能API ====================
  709. @app.flask_app.route('/api/v0/cache_export', methods=['GET'])
  710. def cache_export():
  711. """高级功能:完整导出 - 保持原cache_raw_export的完整功能"""
  712. try:
  713. cache = app.cache
  714. # 验证缓存的实际结构
  715. if not hasattr(cache, 'cache'):
  716. return jsonify(result.failed(message="缓存对象没有cache属性", code=500)), 500
  717. if not isinstance(cache.cache, dict):
  718. return jsonify(result.failed(message="缓存不是字典类型", code=500)), 500
  719. # 定义JSON序列化辅助函数
  720. def make_json_serializable(obj):
  721. """将对象转换为JSON可序列化的格式"""
  722. if obj is None:
  723. return None
  724. elif isinstance(obj, (str, int, float, bool)):
  725. return obj
  726. elif isinstance(obj, (list, tuple)):
  727. return [make_json_serializable(item) for item in obj]
  728. elif isinstance(obj, dict):
  729. return {str(k): make_json_serializable(v) for k, v in obj.items()}
  730. elif hasattr(obj, 'isoformat'): # datetime objects
  731. return obj.isoformat()
  732. elif hasattr(obj, 'item'): # numpy scalars
  733. return obj.item()
  734. elif hasattr(obj, 'tolist'): # numpy arrays
  735. return obj.tolist()
  736. elif hasattr(obj, '__dict__'): # pandas dtypes and other objects
  737. return str(obj)
  738. else:
  739. return str(obj)
  740. # 获取完整的原始缓存数据
  741. raw_cache = cache.cache
  742. # 获取会话和对话时间信息
  743. conversation_times = getattr(cache, 'conversation_start_times', {})
  744. session_info = getattr(cache, 'session_info', {})
  745. conversation_to_session = getattr(cache, 'conversation_to_session', {})
  746. export_data = {
  747. 'export_metadata': {
  748. 'export_time': datetime.now().isoformat(),
  749. 'total_conversations': len(raw_cache),
  750. 'total_sessions': len(session_info),
  751. 'cache_type': type(cache).__name__,
  752. 'cache_object_info': str(cache),
  753. 'has_session_times': bool(session_info),
  754. 'has_conversation_times': bool(conversation_times)
  755. },
  756. 'session_info': {
  757. session_id: {
  758. 'start_time': session_data['start_time'].isoformat(),
  759. 'last_activity': session_data.get('last_activity', session_data['start_time']).isoformat(),
  760. 'conversations': session_data['conversations'],
  761. 'conversation_count': len(session_data['conversations']),
  762. 'browser_session_id': session_data.get('browser_session_id'),
  763. 'user_info': session_data.get('user_info', {})
  764. }
  765. for session_id, session_data in session_info.items()
  766. },
  767. 'conversation_times': {
  768. conversation_id: start_time.isoformat()
  769. for conversation_id, start_time in conversation_times.items()
  770. },
  771. 'conversation_to_session_mapping': conversation_to_session,
  772. 'conversations': {}
  773. }
  774. # 处理每个对话的完整数据
  775. for conversation_id, conversation_data in raw_cache.items():
  776. # 获取时间信息
  777. conversation_start_time = conversation_times.get(conversation_id)
  778. session_id = conversation_to_session.get(conversation_id)
  779. session_start_time = None
  780. if session_id and session_id in session_info:
  781. session_start_time = session_info[session_id]['start_time']
  782. processed_conversation = {
  783. 'conversation_id': conversation_id,
  784. 'conversation_start_time': conversation_start_time.isoformat() if conversation_start_time else None,
  785. 'session_id': session_id,
  786. 'session_start_time': session_start_time.isoformat() if session_start_time else None,
  787. 'field_count': len(conversation_data),
  788. 'fields': {}
  789. }
  790. # 添加时间计算
  791. if conversation_start_time:
  792. conversation_duration = datetime.now() - conversation_start_time
  793. processed_conversation['conversation_duration_seconds'] = conversation_duration.total_seconds()
  794. processed_conversation['conversation_duration_formatted'] = str(conversation_duration)
  795. if session_start_time:
  796. session_duration = datetime.now() - session_start_time
  797. processed_conversation['session_duration_seconds'] = session_duration.total_seconds()
  798. processed_conversation['session_duration_formatted'] = str(session_duration)
  799. # 处理每个字段,确保JSON序列化安全
  800. for field_name, field_value in conversation_data.items():
  801. field_info = {
  802. 'field_name': field_name,
  803. 'data_type': type(field_value).__name__,
  804. 'is_none': field_value is None
  805. }
  806. try:
  807. if field_value is None:
  808. field_info['value'] = None
  809. elif field_name in ['conversation_start_time', 'session_start_time']:
  810. # 处理时间字段
  811. field_info['content'] = make_json_serializable(field_value)
  812. elif field_name == 'df' and field_value is not None:
  813. # DataFrame的安全处理
  814. if hasattr(field_value, 'to_dict'):
  815. # 安全地处理dtypes
  816. try:
  817. dtypes_dict = {}
  818. for col, dtype in field_value.dtypes.items():
  819. dtypes_dict[col] = str(dtype)
  820. except Exception:
  821. dtypes_dict = {"error": "无法序列化dtypes"}
  822. # 安全地处理内存使用
  823. try:
  824. memory_usage = field_value.memory_usage(deep=True)
  825. memory_dict = {}
  826. for idx, usage in memory_usage.items():
  827. memory_dict[str(idx)] = int(usage) if hasattr(usage, 'item') else int(usage)
  828. except Exception:
  829. memory_dict = {"error": "无法获取内存使用信息"}
  830. field_info.update({
  831. 'dataframe_info': {
  832. 'shape': list(field_value.shape),
  833. 'columns': list(field_value.columns),
  834. 'dtypes': dtypes_dict,
  835. 'index_info': {
  836. 'type': type(field_value.index).__name__,
  837. 'length': len(field_value.index)
  838. }
  839. },
  840. 'data': make_json_serializable(field_value.to_dict('records')),
  841. 'memory_usage': memory_dict
  842. })
  843. else:
  844. field_info['value'] = str(field_value)
  845. field_info['note'] = 'not_standard_dataframe'
  846. elif field_name == 'fig_json':
  847. # 图表JSON数据处理
  848. if isinstance(field_value, str):
  849. try:
  850. import json
  851. parsed_fig = json.loads(field_value)
  852. field_info.update({
  853. 'json_valid': True,
  854. 'json_size_bytes': len(field_value),
  855. 'plotly_structure': {
  856. 'has_data': 'data' in parsed_fig,
  857. 'has_layout': 'layout' in parsed_fig,
  858. 'data_traces_count': len(parsed_fig.get('data', [])),
  859. },
  860. 'raw_json': field_value
  861. })
  862. except json.JSONDecodeError:
  863. field_info.update({
  864. 'json_valid': False,
  865. 'raw_content': str(field_value)
  866. })
  867. else:
  868. field_info['value'] = make_json_serializable(field_value)
  869. elif field_name == 'followup_questions':
  870. # 后续问题列表
  871. field_info.update({
  872. 'content': make_json_serializable(field_value)
  873. })
  874. elif field_name in ['question', 'sql', 'summary']:
  875. # 文本字段
  876. if isinstance(field_value, str):
  877. field_info.update({
  878. 'text_length': len(field_value),
  879. 'content': field_value
  880. })
  881. else:
  882. field_info['value'] = make_json_serializable(field_value)
  883. else:
  884. # 未知字段的安全处理
  885. field_info['content'] = make_json_serializable(field_value)
  886. except Exception as e:
  887. field_info.update({
  888. 'processing_error': str(e),
  889. 'fallback_value': str(field_value)[:500] + '...' if len(str(field_value)) > 500 else str(field_value)
  890. })
  891. processed_conversation['fields'][field_name] = field_info
  892. export_data['conversations'][conversation_id] = processed_conversation
  893. # 添加缓存统计信息
  894. field_frequency = {}
  895. data_types_found = set()
  896. total_dataframes = 0
  897. total_questions = 0
  898. for conv_data in export_data['conversations'].values():
  899. for field_name, field_info in conv_data['fields'].items():
  900. field_frequency[field_name] = field_frequency.get(field_name, 0) + 1
  901. data_types_found.add(field_info['data_type'])
  902. if field_name == 'df' and not field_info['is_none']:
  903. total_dataframes += 1
  904. if field_name == 'question' and not field_info['is_none']:
  905. total_questions += 1
  906. export_data['cache_statistics'] = {
  907. 'field_frequency': field_frequency,
  908. 'data_types_found': list(data_types_found),
  909. 'total_dataframes': total_dataframes,
  910. 'total_questions': total_questions,
  911. 'has_session_timing': 'session_start_time' in field_frequency,
  912. 'has_conversation_timing': 'conversation_start_time' in field_frequency
  913. }
  914. return jsonify(result.success(data=export_data))
  915. except Exception as e:
  916. import traceback
  917. error_details = {
  918. 'error_message': str(e),
  919. 'error_type': type(e).__name__,
  920. 'traceback': traceback.format_exc()
  921. }
  922. return jsonify(result.failed(
  923. message=f"导出缓存失败: {str(e)}",
  924. code=500,
  925. data=error_details
  926. )), 500
  927. # ==================== 清理功能API ====================
  928. @app.flask_app.route('/api/v0/cache_preview_cleanup', methods=['POST'])
  929. def cache_preview_cleanup():
  930. """清理功能:预览删除操作 - 保持原功能"""
  931. try:
  932. req = request.get_json(force=True)
  933. # 时间条件 - 支持三种方式
  934. older_than_hours = req.get('older_than_hours')
  935. older_than_days = req.get('older_than_days')
  936. before_timestamp = req.get('before_timestamp') # YYYY-MM-DD HH:MM:SS 格式
  937. cache = app.cache
  938. # 计算截止时间
  939. cutoff_time = None
  940. time_condition = None
  941. if older_than_hours:
  942. cutoff_time = datetime.now() - timedelta(hours=older_than_hours)
  943. time_condition = f"older_than_hours: {older_than_hours}"
  944. elif older_than_days:
  945. cutoff_time = datetime.now() - timedelta(days=older_than_days)
  946. time_condition = f"older_than_days: {older_than_days}"
  947. elif before_timestamp:
  948. try:
  949. # 支持 YYYY-MM-DD HH:MM:SS 格式
  950. cutoff_time = datetime.strptime(before_timestamp, '%Y-%m-%d %H:%M:%S')
  951. time_condition = f"before_timestamp: {before_timestamp}"
  952. except ValueError:
  953. return jsonify(result.failed(
  954. message="before_timestamp格式错误,请使用 YYYY-MM-DD HH:MM:SS 格式",
  955. code=400
  956. )), 400
  957. else:
  958. return jsonify(result.failed(
  959. message="必须提供时间条件:older_than_hours, older_than_days 或 before_timestamp (YYYY-MM-DD HH:MM:SS)",
  960. code=400
  961. )), 400
  962. preview = {
  963. 'time_condition': time_condition,
  964. 'cutoff_time': cutoff_time.isoformat(),
  965. 'will_be_removed': {
  966. 'sessions': []
  967. },
  968. 'will_be_kept': {
  969. 'sessions_count': 0,
  970. 'conversations_count': 0
  971. },
  972. 'summary': {
  973. 'sessions_to_remove': 0,
  974. 'conversations_to_remove': 0,
  975. 'sessions_to_keep': 0,
  976. 'conversations_to_keep': 0
  977. }
  978. }
  979. # 预览按session删除
  980. sessions_to_remove_count = 0
  981. conversations_to_remove_count = 0
  982. for session_id, session_data in cache.session_info.items():
  983. session_preview = {
  984. 'session_id': session_id,
  985. 'start_time': session_data['start_time'].isoformat(),
  986. 'conversation_count': len(session_data['conversations']),
  987. 'conversations': []
  988. }
  989. # 添加conversation详情
  990. for conv_id in session_data['conversations']:
  991. if conv_id in cache.cache:
  992. conv_data = cache.cache[conv_id]
  993. session_preview['conversations'].append({
  994. 'conversation_id': conv_id,
  995. 'question': conv_data.get('question', '')[:50] + '...' if conv_data.get('question') else '',
  996. 'start_time': cache.conversation_start_times.get(conv_id, '').isoformat() if cache.conversation_start_times.get(conv_id) else ''
  997. })
  998. if session_data['start_time'] < cutoff_time:
  999. preview['will_be_removed']['sessions'].append(session_preview)
  1000. sessions_to_remove_count += 1
  1001. conversations_to_remove_count += len(session_data['conversations'])
  1002. else:
  1003. preview['will_be_kept']['sessions_count'] += 1
  1004. preview['will_be_kept']['conversations_count'] += len(session_data['conversations'])
  1005. # 更新摘要统计
  1006. preview['summary'] = {
  1007. 'sessions_to_remove': sessions_to_remove_count,
  1008. 'conversations_to_remove': conversations_to_remove_count,
  1009. 'sessions_to_keep': preview['will_be_kept']['sessions_count'],
  1010. 'conversations_to_keep': preview['will_be_kept']['conversations_count']
  1011. }
  1012. return jsonify(result.success(data=preview))
  1013. except Exception as e:
  1014. return jsonify(result.failed(
  1015. message=f"预览清理操作失败: {str(e)}",
  1016. code=500
  1017. )), 500
  1018. @app.flask_app.route('/api/v0/cache_cleanup', methods=['POST'])
  1019. def cache_cleanup():
  1020. """清理功能:实际删除缓存 - 保持原功能"""
  1021. try:
  1022. req = request.get_json(force=True)
  1023. # 时间条件 - 支持三种方式
  1024. older_than_hours = req.get('older_than_hours')
  1025. older_than_days = req.get('older_than_days')
  1026. before_timestamp = req.get('before_timestamp') # YYYY-MM-DD HH:MM:SS 格式
  1027. cache = app.cache
  1028. if not hasattr(cache, 'session_info'):
  1029. return jsonify(result.failed(
  1030. message="缓存不支持会话功能",
  1031. code=400
  1032. )), 400
  1033. # 计算截止时间
  1034. cutoff_time = None
  1035. time_condition = None
  1036. if older_than_hours:
  1037. cutoff_time = datetime.now() - timedelta(hours=older_than_hours)
  1038. time_condition = f"older_than_hours: {older_than_hours}"
  1039. elif older_than_days:
  1040. cutoff_time = datetime.now() - timedelta(days=older_than_days)
  1041. time_condition = f"older_than_days: {older_than_days}"
  1042. elif before_timestamp:
  1043. try:
  1044. # 支持 YYYY-MM-DD HH:MM:SS 格式
  1045. cutoff_time = datetime.strptime(before_timestamp, '%Y-%m-%d %H:%M:%S')
  1046. time_condition = f"before_timestamp: {before_timestamp}"
  1047. except ValueError:
  1048. return jsonify(result.failed(
  1049. message="before_timestamp格式错误,请使用 YYYY-MM-DD HH:MM:SS 格式",
  1050. code=400
  1051. )), 400
  1052. else:
  1053. return jsonify(result.failed(
  1054. message="必须提供时间条件:older_than_hours, older_than_days 或 before_timestamp (YYYY-MM-DD HH:MM:SS)",
  1055. code=400
  1056. )), 400
  1057. cleanup_stats = {
  1058. 'time_condition': time_condition,
  1059. 'cutoff_time': cutoff_time.isoformat(),
  1060. 'sessions_removed': 0,
  1061. 'conversations_removed': 0,
  1062. 'sessions_kept': 0,
  1063. 'conversations_kept': 0,
  1064. 'removed_session_ids': [],
  1065. 'removed_conversation_ids': []
  1066. }
  1067. # 按session删除
  1068. sessions_to_remove = []
  1069. for session_id, session_data in cache.session_info.items():
  1070. if session_data['start_time'] < cutoff_time:
  1071. sessions_to_remove.append(session_id)
  1072. # 删除符合条件的sessions及其所有conversations
  1073. for session_id in sessions_to_remove:
  1074. session_data = cache.session_info[session_id]
  1075. conversations_in_session = session_data['conversations'].copy()
  1076. # 删除session中的所有conversations
  1077. for conv_id in conversations_in_session:
  1078. if conv_id in cache.cache:
  1079. del cache.cache[conv_id]
  1080. cleanup_stats['conversations_removed'] += 1
  1081. cleanup_stats['removed_conversation_ids'].append(conv_id)
  1082. # 清理conversation相关的时间记录
  1083. if hasattr(cache, 'conversation_start_times') and conv_id in cache.conversation_start_times:
  1084. del cache.conversation_start_times[conv_id]
  1085. if hasattr(cache, 'conversation_to_session') and conv_id in cache.conversation_to_session:
  1086. del cache.conversation_to_session[conv_id]
  1087. # 删除session记录
  1088. del cache.session_info[session_id]
  1089. cleanup_stats['sessions_removed'] += 1
  1090. cleanup_stats['removed_session_ids'].append(session_id)
  1091. # 统计保留的sessions和conversations
  1092. cleanup_stats['sessions_kept'] = len(cache.session_info)
  1093. cleanup_stats['conversations_kept'] = len(cache.cache)
  1094. return jsonify(result.success(data=cleanup_stats))
  1095. except Exception as e:
  1096. return jsonify(result.failed(
  1097. message=f"清理缓存失败: {str(e)}",
  1098. code=500
  1099. )), 500
  1100. @app.flask_app.route('/api/v0/training_error_question_sql', methods=['POST'])
  1101. def training_error_question_sql():
  1102. """
  1103. 存储错误的question-sql对到error_sql集合中
  1104. 此API将接收的错误question/sql pair写入到error_sql集合中,用于记录和分析错误的SQL查询。
  1105. Args:
  1106. question (str, required): 用户问题
  1107. sql (str, required): 对应的错误SQL查询语句
  1108. Returns:
  1109. JSON: 包含训练ID和成功消息的响应
  1110. """
  1111. try:
  1112. data = request.get_json()
  1113. question = data.get('question')
  1114. sql = data.get('sql')
  1115. print(f"[DEBUG] 接收到错误SQL训练请求: question={question}, sql={sql}")
  1116. if not question or not sql:
  1117. return jsonify(result.failed(
  1118. message="question和sql参数都是必需的",
  1119. code=400
  1120. )), 400
  1121. # 使用vn实例的train_error_sql方法存储错误SQL
  1122. id = vn.train_error_sql(question=question, sql=sql)
  1123. print(f"[INFO] 成功存储错误SQL,ID: {id}")
  1124. return jsonify(result.success(data={
  1125. "id": id,
  1126. "message": "错误SQL对已成功存储到error_sql集合"
  1127. }))
  1128. except Exception as e:
  1129. print(f"[ERROR] 存储错误SQL失败: {str(e)}")
  1130. return jsonify(result.failed(
  1131. message=f"存储错误SQL失败: {str(e)}",
  1132. code=500
  1133. )), 500
  1134. # 前端JavaScript示例 - 如何维持会话
  1135. """
  1136. // 前端需要维护一个会话ID
  1137. class ChatSession {
  1138. constructor() {
  1139. // 从localStorage获取或创建新的会话ID
  1140. this.sessionId = localStorage.getItem('chat_session_id') || this.generateSessionId();
  1141. localStorage.setItem('chat_session_id', this.sessionId);
  1142. }
  1143. generateSessionId() {
  1144. return 'session_' + Date.now() + '_' + Math.random().toString(36).substr(2, 9);
  1145. }
  1146. async askQuestion(question) {
  1147. const response = await fetch('/api/v0/ask', {
  1148. method: 'POST',
  1149. headers: {
  1150. 'Content-Type': 'application/json',
  1151. },
  1152. body: JSON.stringify({
  1153. question: question,
  1154. session_id: this.sessionId // 关键:传递会话ID
  1155. })
  1156. });
  1157. return await response.json();
  1158. }
  1159. // 开始新会话
  1160. startNewSession() {
  1161. this.sessionId = this.generateSessionId();
  1162. localStorage.setItem('chat_session_id', this.sessionId);
  1163. }
  1164. }
  1165. // 使用示例
  1166. const chatSession = new ChatSession();
  1167. chatSession.askQuestion("各年龄段客户的流失率如何?");
  1168. """
  1169. print("正在启动Flask应用: http://localhost:8084")
  1170. app.run(host="0.0.0.0", port=8084, debug=True)