123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- import ast
- import json
- import logging
- import uuid
- import pandas as pd
- from langchain_core.documents import Document
- from langchain_postgres.vectorstores import PGVector
- from sqlalchemy import create_engine, text
- from vanna.exceptions import ValidationError
- from vanna.base import VannaBase
- from vanna.types import TrainingPlan, TrainingPlanItem
- class PG_VectorStore(VannaBase):
- def __init__(self, config=None):
- if not config or "connection_string" not in config:
- raise ValueError(
- "A valid 'config' dictionary with a 'connection_string' is required.")
- VannaBase.__init__(self, config=config)
- if config and "connection_string" in config:
- self.connection_string = config.get("connection_string")
- self.n_results = config.get("n_results", 10)
- if config and "embedding_function" in config:
- self.embedding_function = config.get("embedding_function")
- else:
- raise ValueError("No embedding_function was found.")
- # from langchain_huggingface import HuggingFaceEmbeddings
- # self.embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
- self.sql_collection = PGVector(
- embeddings=self.embedding_function,
- collection_name="sql",
- connection=self.connection_string,
- )
- self.ddl_collection = PGVector(
- embeddings=self.embedding_function,
- collection_name="ddl",
- connection=self.connection_string,
- )
- self.documentation_collection = PGVector(
- embeddings=self.embedding_function,
- collection_name="documentation",
- connection=self.connection_string,
- )
- def add_question_sql(self, question: str, sql: str, **kwargs) -> str:
- question_sql_json = json.dumps(
- {
- "question": question,
- "sql": sql,
- },
- ensure_ascii=False,
- )
- id = str(uuid.uuid4()) + "-sql"
- createdat = kwargs.get("createdat")
- doc = Document(
- page_content=question_sql_json,
- metadata={"id": id, "createdat": createdat},
- )
- self.sql_collection.add_documents([doc], ids=[doc.metadata["id"]])
- return id
- def add_ddl(self, ddl: str, **kwargs) -> str:
- _id = str(uuid.uuid4()) + "-ddl"
- doc = Document(
- page_content=ddl,
- metadata={"id": _id},
- )
- self.ddl_collection.add_documents([doc], ids=[doc.metadata["id"]])
- return _id
- def add_documentation(self, documentation: str, **kwargs) -> str:
- _id = str(uuid.uuid4()) + "-doc"
- doc = Document(
- page_content=documentation,
- metadata={"id": _id},
- )
- self.documentation_collection.add_documents([doc], ids=[doc.metadata["id"]])
- return _id
- def get_collection(self, collection_name):
- match collection_name:
- case "sql":
- return self.sql_collection
- case "ddl":
- return self.ddl_collection
- case "documentation":
- return self.documentation_collection
- case _:
- raise ValueError("Specified collection does not exist.")
- def get_similar_question_sql(self, question: str) -> list:
- documents = self.sql_collection.similarity_search(query=question, k=self.n_results)
- return [ast.literal_eval(document.page_content) for document in documents]
- def get_related_ddl(self, question: str, **kwargs) -> list:
- documents = self.ddl_collection.similarity_search(query=question, k=self.n_results)
- return [document.page_content for document in documents]
- def get_related_documentation(self, question: str, **kwargs) -> list:
- documents = self.documentation_collection.similarity_search(query=question, k=self.n_results)
- return [document.page_content for document in documents]
- def train(
- self,
- question: str | None = None,
- sql: str | None = None,
- ddl: str | None = None,
- documentation: str | None = None,
- plan: TrainingPlan | None = None,
- createdat: str | None = None,
- ):
- if question and not sql:
- raise ValidationError("Please provide a SQL query.")
- if documentation:
- logging.info(f"Adding documentation: {documentation}")
- return self.add_documentation(documentation)
- if sql and question:
- return self.add_question_sql(question=question, sql=sql, createdat=createdat)
- if ddl:
- logging.info(f"Adding ddl: {ddl}")
- return self.add_ddl(ddl)
- if plan:
- for item in plan._plan:
- if item.item_type == TrainingPlanItem.ITEM_TYPE_DDL:
- self.add_ddl(item.item_value)
- elif item.item_type == TrainingPlanItem.ITEM_TYPE_IS:
- self.add_documentation(item.item_value)
- elif item.item_type == TrainingPlanItem.ITEM_TYPE_SQL and item.item_name:
- self.add_question_sql(question=item.item_name, sql=item.item_value)
- def get_training_data(self, **kwargs) -> pd.DataFrame:
- # Establishing the connection
- engine = create_engine(self.connection_string)
- # Querying the 'langchain_pg_embedding' table
- query_embedding = "SELECT cmetadata, document FROM langchain_pg_embedding"
- df_embedding = pd.read_sql(query_embedding, engine)
- # List to accumulate the processed rows
- processed_rows = []
- # Process each row in the DataFrame
- for _, row in df_embedding.iterrows():
- custom_id = row["cmetadata"]["id"]
- document = row["document"]
- training_data_type = "documentation" if custom_id[-3:] == "doc" else custom_id[-3:]
- if training_data_type == "sql":
- # Convert the document string to a dictionary
- try:
- doc_dict = ast.literal_eval(document)
- question = doc_dict.get("question")
- content = doc_dict.get("sql")
- except (ValueError, SyntaxError):
- logging.info(f"Skipping row with custom_id {custom_id} due to parsing error.")
- continue
- elif training_data_type in ["documentation", "ddl"]:
- question = None # Default value for question
- content = document
- else:
- # If the suffix is not recognized, skip this row
- logging.info(f"Skipping row with custom_id {custom_id} due to unrecognized training data type.")
- continue
- # Append the processed data to the list
- processed_rows.append(
- {"id": custom_id, "question": question, "content": content, "training_data_type": training_data_type}
- )
- # Create a DataFrame from the list of processed rows
- df_processed = pd.DataFrame(processed_rows)
- return df_processed
- def remove_training_data(self, id: str, **kwargs) -> bool:
- # Create the database engine
- engine = create_engine(self.connection_string)
- # SQL DELETE statement
- delete_statement = text(
- """
- DELETE FROM langchain_pg_embedding
- WHERE cmetadata ->> 'id' = :id
- """
- )
- # Connect to the database and execute the delete statement
- with engine.connect() as connection:
- # Start a transaction
- with connection.begin() as transaction:
- try:
- result = connection.execute(delete_statement, {"id": id})
- # Commit the transaction if the delete was successful
- transaction.commit()
- # Check if any row was deleted and return True or False accordingly
- return result.rowcount > 0
- except Exception as e:
- # Rollback the transaction in case of error
- logging.error(f"An error occurred: {e}")
- transaction.rollback()
- return False
- def remove_collection(self, collection_name: str) -> bool:
- engine = create_engine(self.connection_string)
- # Determine the suffix to look for based on the collection name
- suffix_map = {"ddl": "ddl", "sql": "sql", "documentation": "doc"}
- suffix = suffix_map.get(collection_name)
- if not suffix:
- logging.info("Invalid collection name. Choose from 'ddl', 'sql', or 'documentation'.")
- return False
- # SQL query to delete rows based on the condition
- query = text(
- f"""
- DELETE FROM langchain_pg_embedding
- WHERE cmetadata->>'id' LIKE '%{suffix}'
- """
- )
- # Execute the deletion within a transaction block
- with engine.connect() as connection:
- with connection.begin() as transaction:
- try:
- result = connection.execute(query)
- transaction.commit() # Explicitly commit the transaction
- if result.rowcount > 0:
- logging.info(
- f"Deleted {result.rowcount} rows from "
- f"langchain_pg_embedding where collection is {collection_name}."
- )
- return True
- else:
- logging.info(f"No rows deleted for collection {collection_name}.")
- return False
- except Exception as e:
- logging.error(f"An error occurred: {e}")
- transaction.rollback() # Rollback in case of error
- return False
- def generate_embedding(self, *args, **kwargs):
- pass
|