citu_agent.py 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. # agent/citu_agent.py
  2. from typing import Dict, Any, Literal
  3. from langgraph.graph import StateGraph, END
  4. from langchain.agents import AgentExecutor, create_openai_tools_agent
  5. from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
  6. from langchain_core.messages import SystemMessage, HumanMessage
  7. from core.logging import get_agent_logger
  8. from agent.state import AgentState
  9. from agent.classifier import QuestionClassifier
  10. from agent.tools import TOOLS, generate_sql, execute_sql, generate_summary, general_chat
  11. from agent.tools.utils import get_compatible_llm
  12. from app_config import ENABLE_RESULT_SUMMARY
  13. class CituLangGraphAgent:
  14. """Citu LangGraph智能助手主类 - 使用@tool装饰器 + Agent工具调用"""
  15. def __init__(self):
  16. # 初始化日志
  17. self.logger = get_agent_logger("CituAgent")
  18. # 加载配置
  19. try:
  20. from agent.config import get_current_config, get_nested_config
  21. self.config = get_current_config()
  22. self.logger.info("加载Agent配置完成")
  23. except ImportError:
  24. self.config = {}
  25. self.logger.warning("配置文件不可用,使用默认配置")
  26. self.classifier = QuestionClassifier()
  27. self.tools = TOOLS
  28. self.llm = get_compatible_llm()
  29. # 注意:现在使用直接工具调用模式,不再需要预创建Agent执行器
  30. self.logger.info("使用直接工具调用模式")
  31. # 不在构造时创建workflow,改为动态创建以支持路由模式参数
  32. # self.workflow = self._create_workflow()
  33. self.logger.info("LangGraph Agent with Direct Tools初始化完成")
  34. def _create_workflow(self, routing_mode: str = None) -> StateGraph:
  35. """根据路由模式创建不同的工作流"""
  36. # 确定使用的路由模式
  37. if routing_mode:
  38. QUESTION_ROUTING_MODE = routing_mode
  39. self.logger.info(f"创建工作流,使用传入的路由模式: {QUESTION_ROUTING_MODE}")
  40. else:
  41. try:
  42. from app_config import QUESTION_ROUTING_MODE
  43. self.logger.info(f"创建工作流,使用配置文件路由模式: {QUESTION_ROUTING_MODE}")
  44. except ImportError:
  45. QUESTION_ROUTING_MODE = "hybrid"
  46. self.logger.warning(f"配置导入失败,使用默认路由模式: {QUESTION_ROUTING_MODE}")
  47. workflow = StateGraph(AgentState)
  48. # 根据路由模式创建不同的工作流
  49. if QUESTION_ROUTING_MODE == "database_direct":
  50. # 直接数据库模式:跳过分类,直接进入数据库处理(使用新的拆分节点)
  51. workflow.add_node("init_direct_database", self._init_direct_database_node)
  52. workflow.add_node("agent_sql_generation", self._agent_sql_generation_node)
  53. workflow.add_node("agent_sql_execution", self._agent_sql_execution_node)
  54. workflow.add_node("format_response", self._format_response_node)
  55. workflow.set_entry_point("init_direct_database")
  56. # 添加条件路由
  57. workflow.add_edge("init_direct_database", "agent_sql_generation")
  58. workflow.add_conditional_edges(
  59. "agent_sql_generation",
  60. self._route_after_sql_generation,
  61. {
  62. "continue_execution": "agent_sql_execution",
  63. "return_to_user": "format_response"
  64. }
  65. )
  66. workflow.add_edge("agent_sql_execution", "format_response")
  67. workflow.add_edge("format_response", END)
  68. elif QUESTION_ROUTING_MODE == "chat_direct":
  69. # 直接聊天模式:跳过分类,直接进入聊天处理
  70. workflow.add_node("init_direct_chat", self._init_direct_chat_node)
  71. workflow.add_node("agent_chat", self._agent_chat_node)
  72. workflow.add_node("format_response", self._format_response_node)
  73. workflow.set_entry_point("init_direct_chat")
  74. workflow.add_edge("init_direct_chat", "agent_chat")
  75. workflow.add_edge("agent_chat", "format_response")
  76. workflow.add_edge("format_response", END)
  77. else:
  78. # 其他模式(hybrid, llm_only):使用新的拆分工作流
  79. workflow.add_node("classify_question", self._classify_question_node)
  80. workflow.add_node("agent_chat", self._agent_chat_node)
  81. workflow.add_node("agent_sql_generation", self._agent_sql_generation_node)
  82. workflow.add_node("agent_sql_execution", self._agent_sql_execution_node)
  83. workflow.add_node("format_response", self._format_response_node)
  84. workflow.set_entry_point("classify_question")
  85. # 添加条件边:分类后的路由
  86. workflow.add_conditional_edges(
  87. "classify_question",
  88. self._route_after_classification,
  89. {
  90. "DATABASE": "agent_sql_generation",
  91. "CHAT": "agent_chat"
  92. }
  93. )
  94. # 添加条件边:SQL生成后的路由
  95. workflow.add_conditional_edges(
  96. "agent_sql_generation",
  97. self._route_after_sql_generation,
  98. {
  99. "continue_execution": "agent_sql_execution",
  100. "return_to_user": "format_response"
  101. }
  102. )
  103. # 普通边
  104. workflow.add_edge("agent_chat", "format_response")
  105. workflow.add_edge("agent_sql_execution", "format_response")
  106. workflow.add_edge("format_response", END)
  107. return workflow.compile()
  108. def _init_direct_database_node(self, state: AgentState) -> AgentState:
  109. """初始化直接数据库模式的状态"""
  110. try:
  111. # 从state中获取路由模式,而不是从配置文件读取
  112. routing_mode = state.get("routing_mode", "database_direct")
  113. # 设置直接数据库模式的分类状态
  114. state["question_type"] = "DATABASE"
  115. state["classification_confidence"] = 1.0
  116. state["classification_reason"] = "配置为直接数据库查询模式"
  117. state["classification_method"] = "direct_database"
  118. state["routing_mode"] = routing_mode
  119. state["current_step"] = "direct_database_init"
  120. state["execution_path"].append("init_direct_database")
  121. self.logger.info("直接数据库模式初始化完成")
  122. return state
  123. except Exception as e:
  124. self.logger.error(f"直接数据库模式初始化异常: {str(e)}")
  125. state["error"] = f"直接数据库模式初始化失败: {str(e)}"
  126. state["error_code"] = 500
  127. state["execution_path"].append("init_direct_database_error")
  128. return state
  129. def _init_direct_chat_node(self, state: AgentState) -> AgentState:
  130. """初始化直接聊天模式的状态"""
  131. try:
  132. # 从state中获取路由模式,而不是从配置文件读取
  133. routing_mode = state.get("routing_mode", "chat_direct")
  134. # 设置直接聊天模式的分类状态
  135. state["question_type"] = "CHAT"
  136. state["classification_confidence"] = 1.0
  137. state["classification_reason"] = "配置为直接聊天模式"
  138. state["classification_method"] = "direct_chat"
  139. state["routing_mode"] = routing_mode
  140. state["current_step"] = "direct_chat_init"
  141. state["execution_path"].append("init_direct_chat")
  142. self.logger.info("直接聊天模式初始化完成")
  143. return state
  144. except Exception as e:
  145. self.logger.error(f"直接聊天模式初始化异常: {str(e)}")
  146. state["error"] = f"直接聊天模式初始化失败: {str(e)}"
  147. state["error_code"] = 500
  148. state["execution_path"].append("init_direct_chat_error")
  149. return state
  150. def _classify_question_node(self, state: AgentState) -> AgentState:
  151. """问题分类节点 - 支持渐进式分类策略"""
  152. try:
  153. # 从state中获取路由模式,而不是从配置文件读取
  154. routing_mode = state.get("routing_mode", "hybrid")
  155. self.logger.info(f"开始分类问题: {state['question']}")
  156. # 获取上下文类型(如果有的话)
  157. context_type = state.get("context_type")
  158. if context_type:
  159. self.logger.info(f"检测到上下文类型: {context_type}")
  160. # 使用渐进式分类策略,传递路由模式
  161. classification_result = self.classifier.classify(state["question"], context_type, routing_mode)
  162. # 更新状态
  163. state["question_type"] = classification_result.question_type
  164. state["classification_confidence"] = classification_result.confidence
  165. state["classification_reason"] = classification_result.reason
  166. state["classification_method"] = classification_result.method
  167. state["routing_mode"] = routing_mode
  168. state["current_step"] = "classified"
  169. state["execution_path"].append("classify")
  170. self.logger.info(f"分类结果: {classification_result.question_type}, 置信度: {classification_result.confidence}")
  171. self.logger.info(f"路由模式: {routing_mode}, 分类方法: {classification_result.method}")
  172. return state
  173. except Exception as e:
  174. self.logger.error(f"问题分类异常: {str(e)}")
  175. state["error"] = f"问题分类失败: {str(e)}"
  176. state["error_code"] = 500
  177. state["execution_path"].append("classify_error")
  178. return state
  179. async def _agent_sql_generation_node(self, state: AgentState) -> AgentState:
  180. """SQL生成验证节点 - 负责生成SQL、验证SQL和决定路由"""
  181. try:
  182. self.logger.info(f"开始处理SQL生成和验证: {state['question']}")
  183. question = state["question"]
  184. # 步骤1:生成SQL
  185. self.logger.info("步骤1:生成SQL")
  186. sql_result = generate_sql.invoke({"question": question, "allow_llm_to_see_data": True})
  187. if not sql_result.get("success"):
  188. # SQL生成失败的统一处理
  189. error_message = sql_result.get("error", "")
  190. error_type = sql_result.get("error_type", "")
  191. #print(f"[SQL_GENERATION] SQL生成失败: {error_message}")
  192. self.logger.debug(f"error_type = '{error_type}'")
  193. # 根据错误类型生成用户提示
  194. if "no relevant tables" in error_message.lower() or "table not found" in error_message.lower():
  195. user_prompt = "数据库中没有相关的表或字段信息,请您提供更多具体信息或修改问题。"
  196. failure_reason = "missing_database_info"
  197. elif "ambiguous" in error_message.lower() or "more information" in error_message.lower():
  198. user_prompt = "您的问题需要更多信息才能准确查询,请提供更详细的描述。"
  199. failure_reason = "ambiguous_question"
  200. elif error_type == "llm_explanation" or error_type == "generation_failed_with_explanation":
  201. # 对于解释性文本,直接设置为聊天响应
  202. state["chat_response"] = error_message + " 请尝试提问其它问题。"
  203. state["sql_generation_success"] = False
  204. state["validation_error_type"] = "llm_explanation"
  205. state["current_step"] = "sql_generation_completed"
  206. state["execution_path"].append("agent_sql_generation")
  207. self.logger.info(f"返回LLM解释性答案: {error_message}")
  208. return state
  209. else:
  210. user_prompt = "无法生成有效的SQL查询,请尝试重新描述您的问题。"
  211. failure_reason = "unknown_generation_failure"
  212. # 统一返回失败状态
  213. state["sql_generation_success"] = False
  214. state["user_prompt"] = user_prompt
  215. state["validation_error_type"] = failure_reason
  216. state["current_step"] = "sql_generation_failed"
  217. state["execution_path"].append("agent_sql_generation_failed")
  218. self.logger.warning(f"生成失败: {failure_reason} - {user_prompt}")
  219. return state
  220. sql = sql_result.get("sql")
  221. state["sql"] = sql
  222. # 步骤1.5:检查是否为解释性响应而非SQL
  223. error_type = sql_result.get("error_type")
  224. if error_type == "llm_explanation" or error_type == "generation_failed_with_explanation":
  225. # LLM返回了解释性文本,直接作为最终答案
  226. explanation = sql_result.get("error", "")
  227. state["chat_response"] = explanation + " 请尝试提问其它问题。"
  228. state["sql_generation_success"] = False
  229. state["validation_error_type"] = "llm_explanation"
  230. state["current_step"] = "sql_generation_completed"
  231. state["execution_path"].append("agent_sql_generation")
  232. self.logger.info(f"返回LLM解释性答案: {explanation}")
  233. return state
  234. if sql:
  235. self.logger.info(f"SQL生成成功: {sql}")
  236. else:
  237. self.logger.warning("SQL为空,但不是解释性响应")
  238. # 这种情况应该很少见,但为了安全起见保留原有的错误处理
  239. return state
  240. # 额外验证:检查SQL格式(防止工具误判)
  241. from agent.tools.utils import _is_valid_sql_format
  242. if not _is_valid_sql_format(sql):
  243. # 内容看起来不是SQL,当作解释性响应处理
  244. state["chat_response"] = sql + " 请尝试提问其它问题。"
  245. state["sql_generation_success"] = False
  246. state["validation_error_type"] = "invalid_sql_format"
  247. state["current_step"] = "sql_generation_completed"
  248. state["execution_path"].append("agent_sql_generation")
  249. self.logger.info(f"内容不是有效SQL,当作解释返回: {sql}")
  250. return state
  251. # 步骤2:SQL验证(如果启用)
  252. if self._is_sql_validation_enabled():
  253. self.logger.info("步骤2:验证SQL")
  254. validation_result = await self._validate_sql_with_custom_priority(sql)
  255. if not validation_result.get("valid"):
  256. # 验证失败,检查是否可以修复
  257. error_type = validation_result.get("error_type")
  258. error_message = validation_result.get("error_message")
  259. can_repair = validation_result.get("can_repair", False)
  260. self.logger.warning(f"SQL验证失败: {error_type} - {error_message}")
  261. if error_type == "forbidden_keywords":
  262. # 禁止词错误,直接失败,不尝试修复
  263. state["sql_generation_success"] = False
  264. state["sql_validation_success"] = False
  265. state["user_prompt"] = error_message
  266. state["validation_error_type"] = "forbidden_keywords"
  267. state["current_step"] = "sql_validation_failed"
  268. state["execution_path"].append("forbidden_keywords_failed")
  269. self.logger.warning("禁止词验证失败,直接结束")
  270. return state
  271. elif error_type == "syntax_error" and can_repair and self._is_auto_repair_enabled():
  272. # 语法错误,尝试修复(仅一次)
  273. self.logger.info(f"尝试修复SQL语法错误(仅一次): {error_message}")
  274. state["sql_repair_attempted"] = True
  275. repair_result = await self._attempt_sql_repair_once(sql, error_message)
  276. if repair_result.get("success"):
  277. # 修复成功
  278. repaired_sql = repair_result.get("repaired_sql")
  279. state["sql"] = repaired_sql
  280. state["sql_generation_success"] = True
  281. state["sql_validation_success"] = True
  282. state["sql_repair_success"] = True
  283. state["current_step"] = "sql_generation_completed"
  284. state["execution_path"].append("sql_repair_success")
  285. self.logger.info(f"SQL修复成功: {repaired_sql}")
  286. return state
  287. else:
  288. # 修复失败,直接结束
  289. repair_error = repair_result.get("error", "修复失败")
  290. self.logger.warning(f"SQL修复失败: {repair_error}")
  291. state["sql_generation_success"] = False
  292. state["sql_validation_success"] = False
  293. state["sql_repair_success"] = False
  294. state["user_prompt"] = f"SQL语法修复失败: {repair_error}"
  295. state["validation_error_type"] = "syntax_repair_failed"
  296. state["current_step"] = "sql_repair_failed"
  297. state["execution_path"].append("sql_repair_failed")
  298. return state
  299. else:
  300. # 不启用修复或其他错误类型,直接失败
  301. state["sql_generation_success"] = False
  302. state["sql_validation_success"] = False
  303. state["user_prompt"] = f"SQL验证失败: {error_message}"
  304. state["validation_error_type"] = error_type
  305. state["current_step"] = "sql_validation_failed"
  306. state["execution_path"].append("sql_validation_failed")
  307. self.logger.warning("SQL验证失败,不尝试修复")
  308. return state
  309. else:
  310. self.logger.info("SQL验证通过")
  311. state["sql_validation_success"] = True
  312. else:
  313. self.logger.info("跳过SQL验证(未启用)")
  314. state["sql_validation_success"] = True
  315. # 生成和验证都成功
  316. state["sql_generation_success"] = True
  317. state["current_step"] = "sql_generation_completed"
  318. state["execution_path"].append("agent_sql_generation")
  319. self.logger.info("SQL生成验证完成,准备执行")
  320. return state
  321. except Exception as e:
  322. self.logger.error(f"SQL生成验证节点异常: {str(e)}")
  323. import traceback
  324. self.logger.error(f"详细错误信息: {traceback.format_exc()}")
  325. state["sql_generation_success"] = False
  326. state["sql_validation_success"] = False
  327. state["user_prompt"] = f"SQL生成验证异常: {str(e)}"
  328. state["validation_error_type"] = "node_exception"
  329. state["current_step"] = "sql_generation_error"
  330. state["execution_path"].append("agent_sql_generation_error")
  331. return state
  332. def _agent_sql_execution_node(self, state: AgentState) -> AgentState:
  333. """SQL执行节点 - 负责执行已验证的SQL和生成摘要"""
  334. try:
  335. self.logger.info(f"开始执行SQL: {state.get('sql', 'N/A')}")
  336. sql = state.get("sql")
  337. question = state["question"]
  338. if not sql:
  339. self.logger.warning("没有可执行的SQL")
  340. state["error"] = "没有可执行的SQL语句"
  341. state["error_code"] = 500
  342. state["current_step"] = "sql_execution_error"
  343. state["execution_path"].append("agent_sql_execution_error")
  344. return state
  345. # 步骤1:执行SQL
  346. self.logger.info("步骤1:执行SQL")
  347. execute_result = execute_sql.invoke({"sql": sql})
  348. if not execute_result.get("success"):
  349. self.logger.error(f"SQL执行失败: {execute_result.get('error')}")
  350. state["error"] = execute_result.get("error", "SQL执行失败")
  351. state["error_code"] = 500
  352. state["current_step"] = "sql_execution_error"
  353. state["execution_path"].append("agent_sql_execution_error")
  354. return state
  355. query_result = execute_result.get("data_result")
  356. state["query_result"] = query_result
  357. self.logger.info(f"SQL执行成功,返回 {query_result.get('row_count', 0)} 行数据")
  358. # 步骤2:生成摘要(根据配置和数据情况)
  359. if ENABLE_RESULT_SUMMARY and query_result.get('row_count', 0) > 0:
  360. self.logger.info("步骤2:生成摘要")
  361. # 重要:提取原始问题用于摘要生成,避免历史记录循环嵌套
  362. original_question = self._extract_original_question(question)
  363. self.logger.debug(f"原始问题: {original_question}")
  364. summary_result = generate_summary.invoke({
  365. "question": original_question, # 使用原始问题而不是enhanced_question
  366. "query_result": query_result,
  367. "sql": sql
  368. })
  369. if not summary_result.get("success"):
  370. self.logger.warning(f"摘要生成失败: {summary_result.get('message')}")
  371. # 摘要生成失败不是致命错误,使用默认摘要
  372. state["summary"] = f"查询执行完成,共返回 {query_result.get('row_count', 0)} 条记录。"
  373. else:
  374. state["summary"] = summary_result.get("summary")
  375. self.logger.info("摘要生成成功")
  376. else:
  377. self.logger.info(f"跳过摘要生成(ENABLE_RESULT_SUMMARY={ENABLE_RESULT_SUMMARY},数据行数={query_result.get('row_count', 0)})")
  378. # 不生成摘要时,不设置summary字段,让格式化响应节点决定如何处理
  379. state["current_step"] = "sql_execution_completed"
  380. state["execution_path"].append("agent_sql_execution")
  381. self.logger.info("SQL执行完成")
  382. return state
  383. except Exception as e:
  384. self.logger.error(f"SQL执行节点异常: {str(e)}")
  385. import traceback
  386. self.logger.error(f"详细错误信息: {traceback.format_exc()}")
  387. state["error"] = f"SQL执行失败: {str(e)}"
  388. state["error_code"] = 500
  389. state["current_step"] = "sql_execution_error"
  390. state["execution_path"].append("agent_sql_execution_error")
  391. return state
  392. def _agent_database_node(self, state: AgentState) -> AgentState:
  393. """
  394. 数据库Agent节点 - 直接工具调用模式 [已废弃]
  395. 注意:此方法已被拆分为 _agent_sql_generation_node 和 _agent_sql_execution_node
  396. 保留此方法仅为向后兼容,新的工作流使用拆分后的节点
  397. """
  398. try:
  399. self.logger.warning("使用已废弃的database节点,建议使用新的拆分节点")
  400. self.logger.info(f"开始处理数据库查询: {state['question']}")
  401. question = state["question"]
  402. # 步骤1:生成SQL
  403. self.logger.info("步骤1:生成SQL")
  404. sql_result = generate_sql.invoke({"question": question, "allow_llm_to_see_data": True})
  405. if not sql_result.get("success"):
  406. self.logger.error(f"SQL生成失败: {sql_result.get('error')}")
  407. state["error"] = sql_result.get("error", "SQL生成失败")
  408. state["error_code"] = 500
  409. state["current_step"] = "database_error"
  410. state["execution_path"].append("agent_database_error")
  411. return state
  412. sql = sql_result.get("sql")
  413. state["sql"] = sql
  414. self.logger.info(f"SQL生成成功: {sql}")
  415. # 步骤1.5:检查是否为解释性响应而非SQL
  416. error_type = sql_result.get("error_type")
  417. if error_type == "llm_explanation":
  418. # LLM返回了解释性文本,直接作为最终答案
  419. explanation = sql_result.get("error", "")
  420. state["chat_response"] = explanation + " 请尝试提问其它问题。"
  421. state["current_step"] = "database_completed"
  422. state["execution_path"].append("agent_database")
  423. self.logger.info(f"返回LLM解释性答案: {explanation}")
  424. return state
  425. # 额外验证:检查SQL格式(防止工具误判)
  426. from agent.tools.utils import _is_valid_sql_format
  427. if not _is_valid_sql_format(sql):
  428. # 内容看起来不是SQL,当作解释性响应处理
  429. state["chat_response"] = sql + " 请尝试提问其它问题。"
  430. state["current_step"] = "database_completed"
  431. state["execution_path"].append("agent_database")
  432. self.logger.info(f"内容不是有效SQL,当作解释返回: {sql}")
  433. return state
  434. # 步骤2:执行SQL
  435. self.logger.info("步骤2:执行SQL")
  436. execute_result = execute_sql.invoke({"sql": sql})
  437. if not execute_result.get("success"):
  438. self.logger.error(f"SQL执行失败: {execute_result.get('error')}")
  439. state["error"] = execute_result.get("error", "SQL执行失败")
  440. state["error_code"] = 500
  441. state["current_step"] = "database_error"
  442. state["execution_path"].append("agent_database_error")
  443. return state
  444. query_result = execute_result.get("data_result")
  445. state["query_result"] = query_result
  446. self.logger.info(f"SQL执行成功,返回 {query_result.get('row_count', 0)} 行数据")
  447. # 步骤3:生成摘要(可通过配置控制,仅在有数据时生成)
  448. if ENABLE_RESULT_SUMMARY and query_result.get('row_count', 0) > 0:
  449. self.logger.info("步骤3:生成摘要")
  450. # 重要:提取原始问题用于摘要生成,避免历史记录循环嵌套
  451. original_question = self._extract_original_question(question)
  452. self.logger.debug(f"原始问题: {original_question}")
  453. summary_result = generate_summary.invoke({
  454. "question": original_question, # 使用原始问题而不是enhanced_question
  455. "query_result": query_result,
  456. "sql": sql
  457. })
  458. if not summary_result.get("success"):
  459. self.logger.warning(f"摘要生成失败: {summary_result.get('message')}")
  460. # 摘要生成失败不是致命错误,使用默认摘要
  461. state["summary"] = f"查询执行完成,共返回 {query_result.get('row_count', 0)} 条记录。"
  462. else:
  463. state["summary"] = summary_result.get("summary")
  464. self.logger.info("摘要生成成功")
  465. else:
  466. self.logger.info(f"跳过摘要生成(ENABLE_RESULT_SUMMARY={ENABLE_RESULT_SUMMARY},数据行数={query_result.get('row_count', 0)})")
  467. # 不生成摘要时,不设置summary字段,让格式化响应节点决定如何处理
  468. state["current_step"] = "database_completed"
  469. state["execution_path"].append("agent_database")
  470. self.logger.info("数据库查询完成")
  471. return state
  472. except Exception as e:
  473. self.logger.error(f"数据库Agent异常: {str(e)}")
  474. import traceback
  475. self.logger.error(f"详细错误信息: {traceback.format_exc()}")
  476. state["error"] = f"数据库查询失败: {str(e)}"
  477. state["error_code"] = 500
  478. state["current_step"] = "database_error"
  479. state["execution_path"].append("agent_database_error")
  480. return state
  481. def _agent_chat_node(self, state: AgentState) -> AgentState:
  482. """聊天Agent节点 - 直接工具调用模式"""
  483. try:
  484. self.logger.info(f"开始处理聊天: {state['question']}")
  485. question = state["question"]
  486. # 构建上下文 - 仅使用真实的对话历史上下文
  487. # 注意:不要将分类原因传递给LLM,那是系统内部的路由信息
  488. enable_context_injection = self.config.get("chat_agent", {}).get("enable_context_injection", True)
  489. context = None
  490. if enable_context_injection:
  491. # TODO: 在这里可以添加真实的对话历史上下文
  492. # 例如从Redis或其他存储中获取最近的对话记录
  493. # context = get_conversation_history(state.get("session_id"))
  494. pass
  495. # 直接调用general_chat工具
  496. self.logger.info("调用general_chat工具")
  497. chat_result = general_chat.invoke({
  498. "question": question,
  499. "context": context
  500. })
  501. if chat_result.get("success"):
  502. state["chat_response"] = chat_result.get("response", "")
  503. self.logger.info("聊天处理成功")
  504. else:
  505. # 处理失败,使用备用响应
  506. state["chat_response"] = chat_result.get("response", "抱歉,我暂时无法处理您的问题。请稍后再试。")
  507. self.logger.warning(f"聊天处理失败,使用备用响应: {chat_result.get('error')}")
  508. state["current_step"] = "chat_completed"
  509. state["execution_path"].append("agent_chat")
  510. self.logger.info("聊天处理完成")
  511. return state
  512. except Exception as e:
  513. self.logger.error(f"聊天Agent异常: {str(e)}")
  514. import traceback
  515. self.logger.error(f"详细错误信息: {traceback.format_exc()}")
  516. state["chat_response"] = "抱歉,我暂时无法处理您的问题。请稍后再试,或者尝试询问数据相关的问题。"
  517. state["current_step"] = "chat_error"
  518. state["execution_path"].append("agent_chat_error")
  519. return state
  520. def _format_response_node(self, state: AgentState) -> AgentState:
  521. """格式化最终响应节点"""
  522. try:
  523. self.logger.info(f"开始格式化响应,问题类型: {state['question_type']}")
  524. state["current_step"] = "completed"
  525. state["execution_path"].append("format_response")
  526. # 根据问题类型和执行状态格式化响应
  527. if state.get("error"):
  528. # 有错误的情况
  529. state["final_response"] = {
  530. "success": False,
  531. "error": state["error"],
  532. "error_code": state.get("error_code", 500),
  533. "question_type": state["question_type"],
  534. "execution_path": state["execution_path"],
  535. "classification_info": {
  536. "confidence": state.get("classification_confidence", 0),
  537. "reason": state.get("classification_reason", ""),
  538. "method": state.get("classification_method", "")
  539. }
  540. }
  541. elif state["question_type"] == "DATABASE":
  542. # 数据库查询类型
  543. # 处理SQL生成失败的情况
  544. if not state.get("sql_generation_success", True) and state.get("user_prompt"):
  545. state["final_response"] = {
  546. "success": False,
  547. "response": state["user_prompt"],
  548. "type": "DATABASE",
  549. "sql_generation_failed": True,
  550. "validation_error_type": state.get("validation_error_type"),
  551. "sql": state.get("sql"),
  552. "execution_path": state["execution_path"],
  553. "classification_info": {
  554. "confidence": state["classification_confidence"],
  555. "reason": state["classification_reason"],
  556. "method": state["classification_method"]
  557. },
  558. "sql_validation_info": {
  559. "sql_generation_success": state.get("sql_generation_success", False),
  560. "sql_validation_success": state.get("sql_validation_success", False),
  561. "sql_repair_attempted": state.get("sql_repair_attempted", False),
  562. "sql_repair_success": state.get("sql_repair_success", False)
  563. }
  564. }
  565. elif state.get("chat_response"):
  566. # SQL生成失败的解释性响应(不受ENABLE_RESULT_SUMMARY配置影响)
  567. state["final_response"] = {
  568. "success": True,
  569. "response": state["chat_response"],
  570. "type": "DATABASE",
  571. "sql": state.get("sql"),
  572. "query_result": state.get("query_result"), # 保持内部字段名不变
  573. "execution_path": state["execution_path"],
  574. "classification_info": {
  575. "confidence": state["classification_confidence"],
  576. "reason": state["classification_reason"],
  577. "method": state["classification_method"]
  578. }
  579. }
  580. elif state.get("summary"):
  581. # 正常的数据库查询结果,有摘要的情况
  582. # 将summary的值同时赋给response字段(为将来移除summary字段做准备)
  583. state["final_response"] = {
  584. "success": True,
  585. "type": "DATABASE",
  586. "response": state["summary"], # 新增:将summary的值赋给response
  587. "sql": state.get("sql"),
  588. "query_result": state.get("query_result"), # 保持内部字段名不变
  589. "summary": state["summary"], # 暂时保留summary字段
  590. "execution_path": state["execution_path"],
  591. "classification_info": {
  592. "confidence": state["classification_confidence"],
  593. "reason": state["classification_reason"],
  594. "method": state["classification_method"]
  595. }
  596. }
  597. elif state.get("query_result"):
  598. # 有数据但没有摘要(摘要被配置禁用)
  599. query_result = state.get("query_result")
  600. row_count = query_result.get("row_count", 0)
  601. # 构建基本响应,不包含summary字段和response字段
  602. # 用户应该直接从query_result.columns和query_result.rows获取数据
  603. state["final_response"] = {
  604. "success": True,
  605. "type": "DATABASE",
  606. "sql": state.get("sql"),
  607. "query_result": query_result, # 保持内部字段名不变
  608. "execution_path": state["execution_path"],
  609. "classification_info": {
  610. "confidence": state["classification_confidence"],
  611. "reason": state["classification_reason"],
  612. "method": state["classification_method"]
  613. }
  614. }
  615. else:
  616. # 数据库查询失败,没有任何结果
  617. state["final_response"] = {
  618. "success": False,
  619. "error": state.get("error", "数据库查询未完成"),
  620. "type": "DATABASE",
  621. "sql": state.get("sql"),
  622. "execution_path": state["execution_path"]
  623. }
  624. else:
  625. # 聊天类型
  626. state["final_response"] = {
  627. "success": True,
  628. "response": state.get("chat_response", ""),
  629. "type": "CHAT",
  630. "execution_path": state["execution_path"],
  631. "classification_info": {
  632. "confidence": state["classification_confidence"],
  633. "reason": state["classification_reason"],
  634. "method": state["classification_method"]
  635. }
  636. }
  637. self.logger.info("响应格式化完成")
  638. return state
  639. except Exception as e:
  640. self.logger.error(f"响应格式化异常: {str(e)}")
  641. state["final_response"] = {
  642. "success": False,
  643. "error": f"响应格式化异常: {str(e)}",
  644. "error_code": 500,
  645. "execution_path": state["execution_path"]
  646. }
  647. return state
  648. def _route_after_sql_generation(self, state: AgentState) -> Literal["continue_execution", "return_to_user"]:
  649. """
  650. SQL生成后的路由决策
  651. 根据SQL生成和验证的结果决定后续流向:
  652. - SQL生成验证成功 → 继续执行SQL
  653. - SQL生成验证失败 → 直接返回用户提示
  654. """
  655. sql_generation_success = state.get("sql_generation_success", False)
  656. self.logger.debug(f"SQL生成路由: success={sql_generation_success}")
  657. if sql_generation_success:
  658. return "continue_execution" # 路由到SQL执行节点
  659. else:
  660. return "return_to_user" # 路由到format_response,结束流程
  661. def _route_after_classification(self, state: AgentState) -> Literal["DATABASE", "CHAT"]:
  662. """
  663. 分类后的路由决策
  664. 完全信任QuestionClassifier的决策:
  665. - DATABASE类型 → 数据库Agent
  666. - CHAT和UNCERTAIN类型 → 聊天Agent
  667. 这样避免了双重决策的冲突,所有分类逻辑都集中在QuestionClassifier中
  668. """
  669. question_type = state["question_type"]
  670. confidence = state["classification_confidence"]
  671. self.logger.debug(f"分类路由: {question_type}, 置信度: {confidence} (完全信任分类器决策)")
  672. if question_type == "DATABASE":
  673. return "DATABASE"
  674. else:
  675. # 将 "CHAT" 和 "UNCERTAIN" 类型都路由到聊天流程
  676. # 聊天Agent可以处理不确定的情况,并在必要时引导用户提供更多信息
  677. return "CHAT"
  678. async def process_question(self, question: str, session_id: str = None, context_type: str = None, routing_mode: str = None) -> Dict[str, Any]:
  679. """
  680. 统一的问题处理入口
  681. Args:
  682. question: 用户问题
  683. session_id: 会话ID
  684. context_type: 上下文类型 ("DATABASE" 或 "CHAT"),用于渐进式分类
  685. routing_mode: 路由模式,可选,用于覆盖配置文件设置
  686. Returns:
  687. Dict包含完整的处理结果
  688. """
  689. try:
  690. self.logger.info(f"开始处理问题: {question}")
  691. if context_type:
  692. self.logger.info(f"上下文类型: {context_type}")
  693. if routing_mode:
  694. self.logger.info(f"使用指定路由模式: {routing_mode}")
  695. # 动态创建workflow(基于路由模式)
  696. workflow = self._create_workflow(routing_mode)
  697. # 初始化状态
  698. initial_state = self._create_initial_state(question, session_id, context_type, routing_mode)
  699. # 执行工作流
  700. final_state = await workflow.ainvoke(
  701. initial_state,
  702. config={
  703. "configurable": {"session_id": session_id}
  704. } if session_id else None
  705. )
  706. # 提取最终结果
  707. result = final_state["final_response"]
  708. self.logger.info(f"问题处理完成: {result.get('success', False)}")
  709. return result
  710. except Exception as e:
  711. self.logger.error(f"Agent执行异常: {str(e)}")
  712. return {
  713. "success": False,
  714. "error": f"Agent系统异常: {str(e)}",
  715. "error_code": 500,
  716. "execution_path": ["error"]
  717. }
  718. def _create_initial_state(self, question: str, session_id: str = None, context_type: str = None, routing_mode: str = None) -> AgentState:
  719. """创建初始状态 - 支持渐进式分类"""
  720. # 确定使用的路由模式
  721. if routing_mode:
  722. effective_routing_mode = routing_mode
  723. else:
  724. try:
  725. from app_config import QUESTION_ROUTING_MODE
  726. effective_routing_mode = QUESTION_ROUTING_MODE
  727. except ImportError:
  728. effective_routing_mode = "hybrid"
  729. return AgentState(
  730. # 输入信息
  731. question=question,
  732. session_id=session_id,
  733. # 上下文信息
  734. context_type=context_type,
  735. # 分类结果 (初始值,会在分类节点或直接模式初始化节点中更新)
  736. question_type="UNCERTAIN",
  737. classification_confidence=0.0,
  738. classification_reason="",
  739. classification_method="",
  740. # 数据库查询流程状态
  741. sql=None,
  742. sql_generation_attempts=0,
  743. query_result=None,
  744. summary=None,
  745. # SQL验证和修复相关状态
  746. sql_generation_success=False,
  747. sql_validation_success=False,
  748. sql_repair_attempted=False,
  749. sql_repair_success=False,
  750. validation_error_type=None,
  751. user_prompt=None,
  752. # 聊天响应
  753. chat_response=None,
  754. # 最终输出
  755. final_response={},
  756. # 错误处理
  757. error=None,
  758. error_code=None,
  759. # 流程控制
  760. current_step="initialized",
  761. execution_path=["start"],
  762. retry_count=0,
  763. max_retries=3,
  764. # 调试信息
  765. debug_info={},
  766. # 路由模式
  767. routing_mode=effective_routing_mode
  768. )
  769. # ==================== SQL验证和修复相关方法 ====================
  770. def _is_sql_validation_enabled(self) -> bool:
  771. """检查是否启用SQL验证"""
  772. from agent.config import get_nested_config
  773. return (get_nested_config(self.config, "sql_validation.enable_syntax_validation", False) or
  774. get_nested_config(self.config, "sql_validation.enable_forbidden_check", False))
  775. def _is_auto_repair_enabled(self) -> bool:
  776. """检查是否启用自动修复"""
  777. from agent.config import get_nested_config
  778. return (get_nested_config(self.config, "sql_validation.enable_auto_repair", False) and
  779. get_nested_config(self.config, "sql_validation.enable_syntax_validation", False))
  780. async def _validate_sql_with_custom_priority(self, sql: str) -> Dict[str, Any]:
  781. """
  782. 按照自定义优先级验证SQL:先禁止词,再语法
  783. Args:
  784. sql: 要验证的SQL语句
  785. Returns:
  786. 验证结果字典
  787. """
  788. try:
  789. from agent.config import get_nested_config
  790. # 1. 优先检查禁止词(您要求的优先级)
  791. if get_nested_config(self.config, "sql_validation.enable_forbidden_check", True):
  792. forbidden_result = self._check_forbidden_keywords(sql)
  793. if not forbidden_result.get("valid"):
  794. return {
  795. "valid": False,
  796. "error_type": "forbidden_keywords",
  797. "error_message": forbidden_result.get("error"),
  798. "can_repair": False # 禁止词错误不能修复
  799. }
  800. # 2. 再检查语法(EXPLAIN SQL)
  801. if get_nested_config(self.config, "sql_validation.enable_syntax_validation", True):
  802. syntax_result = await self._validate_sql_syntax(sql)
  803. if not syntax_result.get("valid"):
  804. return {
  805. "valid": False,
  806. "error_type": "syntax_error",
  807. "error_message": syntax_result.get("error"),
  808. "can_repair": True # 语法错误可以尝试修复
  809. }
  810. return {"valid": True}
  811. except Exception as e:
  812. return {
  813. "valid": False,
  814. "error_type": "validation_exception",
  815. "error_message": str(e),
  816. "can_repair": False
  817. }
  818. def _check_forbidden_keywords(self, sql: str) -> Dict[str, Any]:
  819. """检查禁止的SQL关键词"""
  820. try:
  821. from agent.config import get_nested_config
  822. forbidden_operations = get_nested_config(
  823. self.config,
  824. "sql_validation.forbidden_operations",
  825. ['UPDATE', 'DELETE', 'DROP', 'ALTER', 'INSERT']
  826. )
  827. sql_upper = sql.upper().strip()
  828. for operation in forbidden_operations:
  829. if sql_upper.startswith(operation.upper()):
  830. return {
  831. "valid": False,
  832. "error": f"不允许的操作: {operation}。本系统只支持查询操作(SELECT)。"
  833. }
  834. return {"valid": True}
  835. except Exception as e:
  836. return {
  837. "valid": False,
  838. "error": f"禁止词检查异常: {str(e)}"
  839. }
  840. async def _validate_sql_syntax(self, sql: str) -> Dict[str, Any]:
  841. """语法验证 - 使用EXPLAIN SQL"""
  842. try:
  843. from common.vanna_instance import get_vanna_instance
  844. import asyncio
  845. vn = get_vanna_instance()
  846. # 构建EXPLAIN查询
  847. explain_sql = f"EXPLAIN {sql}"
  848. # 异步执行验证
  849. result = await asyncio.to_thread(vn.run_sql, explain_sql)
  850. if result is not None:
  851. return {"valid": True}
  852. else:
  853. return {
  854. "valid": False,
  855. "error": "SQL语法验证失败"
  856. }
  857. except Exception as e:
  858. return {
  859. "valid": False,
  860. "error": str(e)
  861. }
  862. async def _attempt_sql_repair_once(self, sql: str, error_message: str) -> Dict[str, Any]:
  863. """
  864. 使用LLM尝试修复SQL - 只修复一次
  865. Args:
  866. sql: 原始SQL
  867. error_message: 错误信息
  868. Returns:
  869. 修复结果字典
  870. """
  871. try:
  872. from common.vanna_instance import get_vanna_instance
  873. from agent.config import get_nested_config
  874. import asyncio
  875. vn = get_vanna_instance()
  876. # 构建修复提示词
  877. repair_prompt = f"""你是一个PostgreSQL SQL专家,请修复以下SQL语句的语法错误。
  878. 当前数据库类型: PostgreSQL
  879. 错误信息: {error_message}
  880. 需要修复的SQL:
  881. {sql}
  882. 修复要求:
  883. 1. 只修复语法错误和表结构错误
  884. 2. 保持SQL的原始业务逻辑不变
  885. 3. 使用PostgreSQL标准语法
  886. 4. 确保修复后的SQL语法正确
  887. 请直接输出修复后的SQL语句,不要添加其他说明文字。"""
  888. # 获取超时配置
  889. timeout = get_nested_config(self.config, "sql_validation.repair_timeout", 60)
  890. # 异步调用LLM修复
  891. response = await asyncio.wait_for(
  892. asyncio.to_thread(
  893. vn.chat_with_llm,
  894. question=repair_prompt,
  895. system_prompt="你是一个专业的PostgreSQL SQL专家,专门负责修复SQL语句中的语法错误。"
  896. ),
  897. timeout=timeout
  898. )
  899. if response and response.strip():
  900. repaired_sql = response.strip()
  901. # 验证修复后的SQL
  902. validation_result = await self._validate_sql_syntax(repaired_sql)
  903. if validation_result.get("valid"):
  904. return {
  905. "success": True,
  906. "repaired_sql": repaired_sql,
  907. "error": None
  908. }
  909. else:
  910. return {
  911. "success": False,
  912. "repaired_sql": None,
  913. "error": f"修复后的SQL仍然无效: {validation_result.get('error')}"
  914. }
  915. else:
  916. return {
  917. "success": False,
  918. "repaired_sql": None,
  919. "error": "LLM返回空响应"
  920. }
  921. except asyncio.TimeoutError:
  922. return {
  923. "success": False,
  924. "repaired_sql": None,
  925. "error": f"修复超时({get_nested_config(self.config, 'sql_validation.repair_timeout', 60)}秒)"
  926. }
  927. except Exception as e:
  928. return {
  929. "success": False,
  930. "repaired_sql": None,
  931. "error": f"修复异常: {str(e)}"
  932. }
  933. # ==================== 原有方法 ====================
  934. def _extract_original_question(self, question: str) -> str:
  935. """
  936. 从enhanced_question中提取原始问题
  937. Args:
  938. question: 可能包含上下文的问题
  939. Returns:
  940. str: 原始问题
  941. """
  942. try:
  943. # 检查是否为enhanced_question格式
  944. if "\n[CONTEXT]\n" in question and "\n[CURRENT]\n" in question:
  945. # 提取[CURRENT]标签后的内容
  946. current_start = question.find("\n[CURRENT]\n")
  947. if current_start != -1:
  948. original_question = question[current_start + len("\n[CURRENT]\n"):].strip()
  949. return original_question
  950. # 如果不是enhanced_question格式,直接返回原问题
  951. return question.strip()
  952. except Exception as e:
  953. self.logger.warning(f"提取原始问题失败: {str(e)}")
  954. return question.strip()
  955. async def health_check(self) -> Dict[str, Any]:
  956. """健康检查"""
  957. try:
  958. # 从配置获取健康检查参数
  959. from agent.config import get_nested_config
  960. test_question = get_nested_config(self.config, "health_check.test_question", "你好")
  961. enable_full_test = get_nested_config(self.config, "health_check.enable_full_test", True)
  962. if enable_full_test:
  963. # 完整流程测试
  964. test_result = await self.process_question(test_question, "health_check")
  965. return {
  966. "status": "healthy" if test_result.get("success") else "degraded",
  967. "test_result": test_result.get("success", False),
  968. "workflow_compiled": True, # 动态创建,始终可用
  969. "tools_count": len(self.tools),
  970. "agent_reuse_enabled": False,
  971. "message": "Agent健康检查完成"
  972. }
  973. else:
  974. # 简单检查
  975. return {
  976. "status": "healthy",
  977. "test_result": True,
  978. "workflow_compiled": True, # 动态创建,始终可用
  979. "tools_count": len(self.tools),
  980. "agent_reuse_enabled": False,
  981. "message": "Agent简单健康检查完成"
  982. }
  983. except Exception as e:
  984. return {
  985. "status": "unhealthy",
  986. "error": str(e),
  987. "workflow_compiled": True, # 动态创建,始终可用
  988. "tools_count": len(self.tools) if hasattr(self, 'tools') else 0,
  989. "agent_reuse_enabled": False,
  990. "message": "Agent健康检查失败"
  991. }