ollama_embedding.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. import requests
  2. import time
  3. import numpy as np
  4. from typing import List, Callable
  5. class OllamaEmbeddingFunction:
  6. def __init__(self, model_name: str, base_url: str, embedding_dimension: int):
  7. self.model_name = model_name
  8. self.base_url = base_url
  9. self.embedding_dimension = embedding_dimension
  10. self.max_retries = 3
  11. self.retry_interval = 2
  12. def __call__(self, input) -> List[List[float]]:
  13. """为文本列表生成嵌入向量"""
  14. if not isinstance(input, list):
  15. input = [input]
  16. embeddings = []
  17. for text in input:
  18. try:
  19. embedding = self.generate_embedding(text)
  20. embeddings.append(embedding)
  21. except Exception as e:
  22. print(f"获取embedding时出错: {e}")
  23. embeddings.append([0.0] * self.embedding_dimension)
  24. return embeddings
  25. def embed_documents(self, texts: List[str]) -> List[List[float]]:
  26. """为文档列表生成嵌入向量(兼容ChromaDB接口)"""
  27. return self.__call__(texts)
  28. def embed_query(self, text: str) -> List[float]:
  29. """为单个查询文本生成嵌入向量(兼容ChromaDB接口)"""
  30. return self.generate_embedding(text)
  31. def generate_embedding(self, text: str) -> List[float]:
  32. """为单个文本生成嵌入向量"""
  33. print(f"生成Ollama嵌入向量,文本长度: {len(text)} 字符")
  34. if not text or len(text.strip()) == 0:
  35. print("输入文本为空,返回零向量")
  36. return [0.0] * self.embedding_dimension
  37. url = f"{self.base_url}/api/embeddings"
  38. payload = {
  39. "model": self.model_name,
  40. "prompt": text
  41. }
  42. retries = 0
  43. while retries <= self.max_retries:
  44. try:
  45. response = requests.post(
  46. url,
  47. json=payload,
  48. timeout=30
  49. )
  50. if response.status_code != 200:
  51. error_msg = f"Ollama API请求错误: {response.status_code}, {response.text}"
  52. print(error_msg)
  53. if response.status_code in (429, 500, 502, 503, 504):
  54. retries += 1
  55. if retries <= self.max_retries:
  56. wait_time = self.retry_interval * (2 ** (retries - 1))
  57. print(f"等待 {wait_time} 秒后重试 ({retries}/{self.max_retries})")
  58. time.sleep(wait_time)
  59. continue
  60. raise ValueError(error_msg)
  61. result = response.json()
  62. if "embedding" in result:
  63. vector = result["embedding"]
  64. # 验证向量维度
  65. actual_dim = len(vector)
  66. if actual_dim != self.embedding_dimension:
  67. print(f"向量维度不匹配: 期望 {self.embedding_dimension}, 实际 {actual_dim}")
  68. # 如果维度不匹配,可以选择截断或填充
  69. if actual_dim > self.embedding_dimension:
  70. vector = vector[:self.embedding_dimension]
  71. else:
  72. vector.extend([0.0] * (self.embedding_dimension - actual_dim))
  73. # 添加成功生成embedding的debug日志
  74. print(f"[DEBUG] ✓ 成功生成Ollama embedding向量,维度: {len(vector)}")
  75. return vector
  76. else:
  77. error_msg = f"Ollama API返回格式异常: {result}"
  78. print(error_msg)
  79. raise ValueError(error_msg)
  80. except Exception as e:
  81. print(f"生成Ollama embedding时出错: {str(e)}")
  82. retries += 1
  83. if retries <= self.max_retries:
  84. wait_time = self.retry_interval * (2 ** (retries - 1))
  85. print(f"等待 {wait_time} 秒后重试 ({retries}/{self.max_retries})")
  86. time.sleep(wait_time)
  87. else:
  88. print(f"已达到最大重试次数 ({self.max_retries}),生成embedding失败")
  89. return [0.0] * self.embedding_dimension
  90. raise RuntimeError("生成Ollama embedding失败")
  91. def test_connection(self, test_text="测试文本") -> dict:
  92. """测试Ollama嵌入模型的连接"""
  93. result = {
  94. "success": False,
  95. "model": self.model_name,
  96. "base_url": self.base_url,
  97. "message": "",
  98. "actual_dimension": None,
  99. "expected_dimension": self.embedding_dimension
  100. }
  101. try:
  102. print(f"测试Ollama嵌入模型连接 - 模型: {self.model_name}")
  103. print(f"Ollama服务地址: {self.base_url}")
  104. vector = self.generate_embedding(test_text)
  105. actual_dimension = len(vector)
  106. result["success"] = True
  107. result["actual_dimension"] = actual_dimension
  108. if actual_dimension != self.embedding_dimension:
  109. result["message"] = f"警告: 模型实际生成的向量维度({actual_dimension})与配置维度({self.embedding_dimension})不一致"
  110. else:
  111. result["message"] = f"Ollama连接测试成功,向量维度: {actual_dimension}"
  112. return result
  113. except Exception as e:
  114. result["message"] = f"Ollama连接测试失败: {str(e)}"
  115. return result