citu_app.py 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. # 给dataops 对话助手返回结果
  2. from vanna.flask import VannaFlaskApp
  3. from vanna_llm_factory import create_vanna_instance
  4. from flask import request, jsonify
  5. import pandas as pd
  6. import common.result as result
  7. from datetime import datetime, timedelta
  8. from common.session_aware_cache import WebSessionAwareMemoryCache
  9. vn = create_vanna_instance()
  10. # 创建带时间戳的缓存
  11. timestamped_cache = WebSessionAwareMemoryCache()
  12. # 实例化 VannaFlaskApp,使用自定义缓存
  13. app = VannaFlaskApp(
  14. vn,
  15. cache=timestamped_cache, # 使用带时间戳的缓存
  16. title="辞图智能数据问答平台",
  17. logo = "https://www.citupro.com/img/logo-black-2.png",
  18. subtitle="让 AI 为你写 SQL",
  19. chart=False,
  20. allow_llm_to_see_data=True,
  21. ask_results_correct=True,
  22. followup_questions=True,
  23. debug=True
  24. )
  25. # 修改ask接口,支持前端传递session_id
  26. @app.flask_app.route('/api/v0/ask', methods=['POST'])
  27. def ask_full():
  28. req = request.get_json(force=True)
  29. question = req.get("question", None)
  30. browser_session_id = req.get("session_id", None) # 前端传递的会话ID
  31. if not question:
  32. return jsonify(result.failed(message="未提供问题", code=400)), 400
  33. # 如果使用WebSessionAwareMemoryCache
  34. if hasattr(app.cache, 'generate_id_with_browser_session') and browser_session_id:
  35. # 这里需要修改vanna的ask方法来支持传递session_id
  36. # 或者预先调用generate_id来建立会话关联
  37. conversation_id = app.cache.generate_id_with_browser_session(
  38. question=question,
  39. browser_session_id=browser_session_id
  40. )
  41. try:
  42. sql, df, _ = vn.ask(
  43. question=question,
  44. print_results=False,
  45. visualize=False,
  46. allow_llm_to_see_data=True
  47. )
  48. rows, columns = [], []
  49. summary = None
  50. if isinstance(df, pd.DataFrame) and not df.empty:
  51. rows = df.head(1000).to_dict(orient="records")
  52. columns = list(df.columns)
  53. # 生成数据摘要
  54. try:
  55. summary = vn.generate_summary(question=question, df=df)
  56. print(f"[INFO] 成功生成摘要: {summary}")
  57. except Exception as e:
  58. print(f"[WARNING] 生成摘要失败: {str(e)}")
  59. summary = None
  60. return jsonify(result.success(data={
  61. "sql": sql,
  62. "rows": rows,
  63. "columns": columns,
  64. "summary": summary, # 添加摘要到返回结果
  65. "conversation_id": conversation_id if 'conversation_id' in locals() else None,
  66. "session_id": browser_session_id
  67. }))
  68. except Exception as e:
  69. print(f"[ERROR] ask_full执行失败: {str(e)}")
  70. return jsonify(result.failed(
  71. message=f"查询处理失败: {str(e)}",
  72. code=500
  73. )), 500
  74. @app.flask_app.route('/api/v0/citu_run_sql', methods=['POST'])
  75. def citu_run_sql():
  76. req = request.get_json(force=True)
  77. sql = req.get('sql')
  78. if not sql:
  79. return jsonify(result.failed(message="未提供SQL查询", code=400)), 400
  80. try:
  81. df = vn.run_sql(sql)
  82. rows, columns = [], []
  83. if isinstance(df, pd.DataFrame) and not df.empty:
  84. rows = df.head(1000).to_dict(orient="records")
  85. columns = list(df.columns)
  86. return jsonify(result.success(data={
  87. "sql": sql,
  88. "rows": rows,
  89. "columns": columns
  90. }))
  91. except Exception as e:
  92. print(f"[ERROR] citu_run_sql执行失败: {str(e)}")
  93. return jsonify(result.failed(
  94. message=f"SQL执行失败: {str(e)}",
  95. code=500
  96. )), 500
  97. @app.flask_app.route('/api/v0/ask_cached', methods=['POST'])
  98. def ask_cached():
  99. """
  100. 带缓存功能的智能查询接口
  101. 支持会话管理和结果缓存,提高查询效率
  102. """
  103. req = request.get_json(force=True)
  104. question = req.get("question", None)
  105. browser_session_id = req.get("session_id", None)
  106. if not question:
  107. return jsonify(result.failed(message="未提供问题", code=400)), 400
  108. try:
  109. # 生成conversation_id
  110. # 调试:查看generate_id的实际行为
  111. print(f"[DEBUG] 输入问题: '{question}'")
  112. conversation_id = app.cache.generate_id(question=question)
  113. print(f"[DEBUG] 生成的conversation_id: {conversation_id}")
  114. # 再次用相同问题测试
  115. conversation_id2 = app.cache.generate_id(question=question)
  116. print(f"[DEBUG] 再次生成的conversation_id: {conversation_id2}")
  117. print(f"[DEBUG] 两次ID是否相同: {conversation_id == conversation_id2}")
  118. # 检查缓存
  119. cached_sql = app.cache.get(id=conversation_id, field="sql")
  120. if cached_sql is not None:
  121. # 缓存命中
  122. print(f"[CACHE HIT] 使用缓存结果: {conversation_id}")
  123. sql = cached_sql
  124. df = app.cache.get(id=conversation_id, field="df")
  125. summary = app.cache.get(id=conversation_id, field="summary")
  126. else:
  127. # 缓存未命中,执行新查询
  128. print(f"[CACHE MISS] 执行新查询: {conversation_id}")
  129. sql, df, _ = vn.ask(
  130. question=question,
  131. print_results=False,
  132. visualize=False,
  133. allow_llm_to_see_data=True
  134. )
  135. # 缓存结果
  136. app.cache.set(id=conversation_id, field="question", value=question)
  137. app.cache.set(id=conversation_id, field="sql", value=sql)
  138. app.cache.set(id=conversation_id, field="df", value=df)
  139. # 生成并缓存摘要
  140. summary = None
  141. if isinstance(df, pd.DataFrame) and not df.empty:
  142. try:
  143. summary = vn.generate_summary(question=question, df=df)
  144. print(f"[INFO] 成功生成摘要: {summary}")
  145. except Exception as e:
  146. print(f"[WARNING] 生成摘要失败: {str(e)}")
  147. summary = None
  148. app.cache.set(id=conversation_id, field="summary", value=summary)
  149. # 处理返回数据
  150. rows, columns = [], []
  151. if isinstance(df, pd.DataFrame) and not df.empty:
  152. rows = df.head(1000).to_dict(orient="records")
  153. columns = list(df.columns)
  154. return jsonify(result.success(data={
  155. "sql": sql,
  156. "rows": rows,
  157. "columns": columns,
  158. "summary": summary,
  159. "conversation_id": conversation_id,
  160. "session_id": browser_session_id,
  161. "cached": cached_sql is not None # 标识是否来自缓存
  162. }))
  163. except Exception as e:
  164. print(f"[ERROR] ask_cached执行失败: {str(e)}")
  165. return jsonify(result.failed(
  166. message=f"查询处理失败: {str(e)}",
  167. code=500
  168. )), 500
  169. @app.flask_app.route('/api/v1/citu_train_question_sql', methods=['POST'])
  170. def citu_train_question_sql():
  171. try:
  172. req = request.get_json(force=True)
  173. question = req.get('question')
  174. sql = req.get('sql')
  175. if not sql:
  176. return jsonify(result.failed(
  177. message="'sql' are required",
  178. code=400
  179. )), 400
  180. # 正确的调用方式:同时传递question和sql
  181. if question:
  182. training_id = vn.train(question=question, sql=sql)
  183. print(f"训练成功,训练ID为:{training_id},问题:{question},SQL:{sql}")
  184. else:
  185. training_id = vn.train(sql=sql)
  186. print(f"训练成功,训练ID为:{training_id},SQL:{sql}")
  187. return jsonify(result.success(data={
  188. "training_id": training_id,
  189. "message": "Question-SQL pair trained successfully"
  190. }))
  191. except Exception as e:
  192. return jsonify(result.failed(
  193. message=f"Training failed: {str(e)}",
  194. code=500
  195. )), 500
  196. # ==================== 日常管理API ====================
  197. @app.flask_app.route('/api/v0/cache_overview', methods=['GET'])
  198. def cache_overview():
  199. """日常管理:轻量概览 - 合并原cache_inspect的核心功能"""
  200. try:
  201. cache = app.cache
  202. result_data = {
  203. 'overview_summary': {
  204. 'total_conversations': 0,
  205. 'total_sessions': 0,
  206. 'query_time': datetime.now().isoformat()
  207. },
  208. 'recent_conversations': [], # 最近的对话
  209. 'session_summary': [] # 会话摘要
  210. }
  211. if hasattr(cache, 'cache') and isinstance(cache.cache, dict):
  212. result_data['overview_summary']['total_conversations'] = len(cache.cache)
  213. # 获取会话信息
  214. if hasattr(cache, 'get_all_sessions'):
  215. all_sessions = cache.get_all_sessions()
  216. result_data['overview_summary']['total_sessions'] = len(all_sessions)
  217. # 会话摘要(按最近活动排序)
  218. session_list = []
  219. for session_id, session_data in all_sessions.items():
  220. session_summary = {
  221. 'session_id': session_id,
  222. 'start_time': session_data['start_time'].isoformat(),
  223. 'conversation_count': session_data.get('conversation_count', 0),
  224. 'duration_seconds': session_data.get('session_duration_seconds', 0),
  225. 'last_activity': session_data.get('last_activity', session_data['start_time']).isoformat(),
  226. 'is_active': (datetime.now() - session_data.get('last_activity', session_data['start_time'])).total_seconds() < 1800 # 30分钟内活跃
  227. }
  228. session_list.append(session_summary)
  229. # 按最后活动时间排序
  230. session_list.sort(key=lambda x: x['last_activity'], reverse=True)
  231. result_data['session_summary'] = session_list
  232. # 最近的对话(最多显示10个)
  233. conversation_list = []
  234. for conversation_id, conversation_data in cache.cache.items():
  235. conversation_start_time = cache.conversation_start_times.get(conversation_id)
  236. conversation_info = {
  237. 'conversation_id': conversation_id,
  238. 'conversation_start_time': conversation_start_time.isoformat() if conversation_start_time else None,
  239. 'session_id': cache.conversation_to_session.get(conversation_id),
  240. 'has_question': 'question' in conversation_data,
  241. 'has_sql': 'sql' in conversation_data,
  242. 'has_data': 'df' in conversation_data and conversation_data['df'] is not None,
  243. 'question_preview': conversation_data.get('question', '')[:80] + '...' if len(conversation_data.get('question', '')) > 80 else conversation_data.get('question', ''),
  244. }
  245. # 计算对话持续时间
  246. if conversation_start_time:
  247. duration = datetime.now() - conversation_start_time
  248. conversation_info['conversation_duration_seconds'] = duration.total_seconds()
  249. conversation_list.append(conversation_info)
  250. # 按对话开始时间排序,显示最新的10个
  251. conversation_list.sort(key=lambda x: x['conversation_start_time'] or '', reverse=True)
  252. result_data['recent_conversations'] = conversation_list[:10]
  253. return jsonify(result.success(data=result_data))
  254. except Exception as e:
  255. return jsonify(result.failed(
  256. message=f"获取缓存概览失败: {str(e)}",
  257. code=500
  258. )), 500
  259. @app.flask_app.route('/api/v0/cache_stats', methods=['GET'])
  260. def cache_stats():
  261. """日常管理:统计信息 - 合并原session_stats和cache_stats功能"""
  262. try:
  263. cache = app.cache
  264. current_time = datetime.now()
  265. stats = {
  266. 'basic_stats': {
  267. 'total_sessions': len(getattr(cache, 'session_info', {})),
  268. 'total_conversations': len(getattr(cache, 'cache', {})),
  269. 'active_sessions': 0, # 最近30分钟有活动
  270. 'average_conversations_per_session': 0
  271. },
  272. 'time_distribution': {
  273. 'sessions': {
  274. 'last_1_hour': 0,
  275. 'last_6_hours': 0,
  276. 'last_24_hours': 0,
  277. 'last_7_days': 0,
  278. 'older': 0
  279. },
  280. 'conversations': {
  281. 'last_1_hour': 0,
  282. 'last_6_hours': 0,
  283. 'last_24_hours': 0,
  284. 'last_7_days': 0,
  285. 'older': 0
  286. }
  287. },
  288. 'session_details': [],
  289. 'time_ranges': {
  290. 'oldest_session': None,
  291. 'newest_session': None,
  292. 'oldest_conversation': None,
  293. 'newest_conversation': None
  294. }
  295. }
  296. # 会话统计
  297. if hasattr(cache, 'session_info'):
  298. session_times = []
  299. total_conversations = 0
  300. for session_id, session_data in cache.session_info.items():
  301. start_time = session_data['start_time']
  302. session_times.append(start_time)
  303. conversation_count = len(session_data.get('conversations', []))
  304. total_conversations += conversation_count
  305. # 检查活跃状态
  306. last_activity = session_data.get('last_activity', session_data['start_time'])
  307. if (current_time - last_activity).total_seconds() < 1800:
  308. stats['basic_stats']['active_sessions'] += 1
  309. # 时间分布统计
  310. age_hours = (current_time - start_time).total_seconds() / 3600
  311. if age_hours <= 1:
  312. stats['time_distribution']['sessions']['last_1_hour'] += 1
  313. elif age_hours <= 6:
  314. stats['time_distribution']['sessions']['last_6_hours'] += 1
  315. elif age_hours <= 24:
  316. stats['time_distribution']['sessions']['last_24_hours'] += 1
  317. elif age_hours <= 168: # 7 days
  318. stats['time_distribution']['sessions']['last_7_days'] += 1
  319. else:
  320. stats['time_distribution']['sessions']['older'] += 1
  321. # 会话详细信息
  322. session_duration = current_time - start_time
  323. stats['session_details'].append({
  324. 'session_id': session_id,
  325. 'start_time': start_time.isoformat(),
  326. 'last_activity': last_activity.isoformat(),
  327. 'conversation_count': conversation_count,
  328. 'duration_seconds': session_duration.total_seconds(),
  329. 'duration_formatted': str(session_duration),
  330. 'is_active': (current_time - last_activity).total_seconds() < 1800,
  331. 'browser_session_id': session_data.get('browser_session_id')
  332. })
  333. # 计算平均值
  334. if len(cache.session_info) > 0:
  335. stats['basic_stats']['average_conversations_per_session'] = total_conversations / len(cache.session_info)
  336. # 时间范围
  337. if session_times:
  338. stats['time_ranges']['oldest_session'] = min(session_times).isoformat()
  339. stats['time_ranges']['newest_session'] = max(session_times).isoformat()
  340. # 对话统计
  341. if hasattr(cache, 'conversation_start_times'):
  342. conversation_times = []
  343. for conv_time in cache.conversation_start_times.values():
  344. conversation_times.append(conv_time)
  345. age_hours = (current_time - conv_time).total_seconds() / 3600
  346. if age_hours <= 1:
  347. stats['time_distribution']['conversations']['last_1_hour'] += 1
  348. elif age_hours <= 6:
  349. stats['time_distribution']['conversations']['last_6_hours'] += 1
  350. elif age_hours <= 24:
  351. stats['time_distribution']['conversations']['last_24_hours'] += 1
  352. elif age_hours <= 168:
  353. stats['time_distribution']['conversations']['last_7_days'] += 1
  354. else:
  355. stats['time_distribution']['conversations']['older'] += 1
  356. if conversation_times:
  357. stats['time_ranges']['oldest_conversation'] = min(conversation_times).isoformat()
  358. stats['time_ranges']['newest_conversation'] = max(conversation_times).isoformat()
  359. # 按最近活动排序会话详情
  360. stats['session_details'].sort(key=lambda x: x['last_activity'], reverse=True)
  361. return jsonify(result.success(data=stats))
  362. except Exception as e:
  363. return jsonify(result.failed(
  364. message=f"获取缓存统计失败: {str(e)}",
  365. code=500
  366. )), 500
  367. # ==================== 高级功能API ====================
  368. @app.flask_app.route('/api/v0/cache_export', methods=['GET'])
  369. def cache_export():
  370. """高级功能:完整导出 - 保持原cache_raw_export的完整功能"""
  371. try:
  372. cache = app.cache
  373. # 验证缓存的实际结构
  374. if not hasattr(cache, 'cache'):
  375. return jsonify(result.failed(message="缓存对象没有cache属性", code=500)), 500
  376. if not isinstance(cache.cache, dict):
  377. return jsonify(result.failed(message="缓存不是字典类型", code=500)), 500
  378. # 定义JSON序列化辅助函数
  379. def make_json_serializable(obj):
  380. """将对象转换为JSON可序列化的格式"""
  381. if obj is None:
  382. return None
  383. elif isinstance(obj, (str, int, float, bool)):
  384. return obj
  385. elif isinstance(obj, (list, tuple)):
  386. return [make_json_serializable(item) for item in obj]
  387. elif isinstance(obj, dict):
  388. return {str(k): make_json_serializable(v) for k, v in obj.items()}
  389. elif hasattr(obj, 'isoformat'): # datetime objects
  390. return obj.isoformat()
  391. elif hasattr(obj, 'item'): # numpy scalars
  392. return obj.item()
  393. elif hasattr(obj, 'tolist'): # numpy arrays
  394. return obj.tolist()
  395. elif hasattr(obj, '__dict__'): # pandas dtypes and other objects
  396. return str(obj)
  397. else:
  398. return str(obj)
  399. # 获取完整的原始缓存数据
  400. raw_cache = cache.cache
  401. # 获取会话和对话时间信息
  402. conversation_times = getattr(cache, 'conversation_start_times', {})
  403. session_info = getattr(cache, 'session_info', {})
  404. conversation_to_session = getattr(cache, 'conversation_to_session', {})
  405. export_data = {
  406. 'export_metadata': {
  407. 'export_time': datetime.now().isoformat(),
  408. 'total_conversations': len(raw_cache),
  409. 'total_sessions': len(session_info),
  410. 'cache_type': type(cache).__name__,
  411. 'cache_object_info': str(cache),
  412. 'has_session_times': bool(session_info),
  413. 'has_conversation_times': bool(conversation_times)
  414. },
  415. 'session_info': {
  416. session_id: {
  417. 'start_time': session_data['start_time'].isoformat(),
  418. 'last_activity': session_data.get('last_activity', session_data['start_time']).isoformat(),
  419. 'conversations': session_data['conversations'],
  420. 'conversation_count': len(session_data['conversations']),
  421. 'browser_session_id': session_data.get('browser_session_id'),
  422. 'user_info': session_data.get('user_info', {})
  423. }
  424. for session_id, session_data in session_info.items()
  425. },
  426. 'conversation_times': {
  427. conversation_id: start_time.isoformat()
  428. for conversation_id, start_time in conversation_times.items()
  429. },
  430. 'conversation_to_session_mapping': conversation_to_session,
  431. 'conversations': {}
  432. }
  433. # 处理每个对话的完整数据
  434. for conversation_id, conversation_data in raw_cache.items():
  435. # 获取时间信息
  436. conversation_start_time = conversation_times.get(conversation_id)
  437. session_id = conversation_to_session.get(conversation_id)
  438. session_start_time = None
  439. if session_id and session_id in session_info:
  440. session_start_time = session_info[session_id]['start_time']
  441. processed_conversation = {
  442. 'conversation_id': conversation_id,
  443. 'conversation_start_time': conversation_start_time.isoformat() if conversation_start_time else None,
  444. 'session_id': session_id,
  445. 'session_start_time': session_start_time.isoformat() if session_start_time else None,
  446. 'field_count': len(conversation_data),
  447. 'fields': {}
  448. }
  449. # 添加时间计算
  450. if conversation_start_time:
  451. conversation_duration = datetime.now() - conversation_start_time
  452. processed_conversation['conversation_duration_seconds'] = conversation_duration.total_seconds()
  453. processed_conversation['conversation_duration_formatted'] = str(conversation_duration)
  454. if session_start_time:
  455. session_duration = datetime.now() - session_start_time
  456. processed_conversation['session_duration_seconds'] = session_duration.total_seconds()
  457. processed_conversation['session_duration_formatted'] = str(session_duration)
  458. # 处理每个字段,确保JSON序列化安全
  459. for field_name, field_value in conversation_data.items():
  460. field_info = {
  461. 'field_name': field_name,
  462. 'data_type': type(field_value).__name__,
  463. 'is_none': field_value is None
  464. }
  465. try:
  466. if field_value is None:
  467. field_info['value'] = None
  468. elif field_name in ['conversation_start_time', 'session_start_time']:
  469. # 处理时间字段
  470. field_info['content'] = make_json_serializable(field_value)
  471. elif field_name == 'df' and field_value is not None:
  472. # DataFrame的安全处理
  473. if hasattr(field_value, 'to_dict'):
  474. # 安全地处理dtypes
  475. try:
  476. dtypes_dict = {}
  477. for col, dtype in field_value.dtypes.items():
  478. dtypes_dict[col] = str(dtype)
  479. except Exception:
  480. dtypes_dict = {"error": "无法序列化dtypes"}
  481. # 安全地处理内存使用
  482. try:
  483. memory_usage = field_value.memory_usage(deep=True)
  484. memory_dict = {}
  485. for idx, usage in memory_usage.items():
  486. memory_dict[str(idx)] = int(usage) if hasattr(usage, 'item') else int(usage)
  487. except Exception:
  488. memory_dict = {"error": "无法获取内存使用信息"}
  489. field_info.update({
  490. 'dataframe_info': {
  491. 'shape': list(field_value.shape),
  492. 'columns': list(field_value.columns),
  493. 'dtypes': dtypes_dict,
  494. 'index_info': {
  495. 'type': type(field_value.index).__name__,
  496. 'length': len(field_value.index)
  497. }
  498. },
  499. 'data': make_json_serializable(field_value.to_dict('records')),
  500. 'memory_usage': memory_dict
  501. })
  502. else:
  503. field_info['value'] = str(field_value)
  504. field_info['note'] = 'not_standard_dataframe'
  505. elif field_name == 'fig_json':
  506. # 图表JSON数据处理
  507. if isinstance(field_value, str):
  508. try:
  509. import json
  510. parsed_fig = json.loads(field_value)
  511. field_info.update({
  512. 'json_valid': True,
  513. 'json_size_bytes': len(field_value),
  514. 'plotly_structure': {
  515. 'has_data': 'data' in parsed_fig,
  516. 'has_layout': 'layout' in parsed_fig,
  517. 'data_traces_count': len(parsed_fig.get('data', [])),
  518. },
  519. 'raw_json': field_value
  520. })
  521. except json.JSONDecodeError:
  522. field_info.update({
  523. 'json_valid': False,
  524. 'raw_content': str(field_value)
  525. })
  526. else:
  527. field_info['value'] = make_json_serializable(field_value)
  528. elif field_name == 'followup_questions':
  529. # 后续问题列表
  530. field_info.update({
  531. 'content': make_json_serializable(field_value)
  532. })
  533. elif field_name in ['question', 'sql', 'summary']:
  534. # 文本字段
  535. if isinstance(field_value, str):
  536. field_info.update({
  537. 'text_length': len(field_value),
  538. 'content': field_value
  539. })
  540. else:
  541. field_info['value'] = make_json_serializable(field_value)
  542. else:
  543. # 未知字段的安全处理
  544. field_info['content'] = make_json_serializable(field_value)
  545. except Exception as e:
  546. field_info.update({
  547. 'processing_error': str(e),
  548. 'fallback_value': str(field_value)[:500] + '...' if len(str(field_value)) > 500 else str(field_value)
  549. })
  550. processed_conversation['fields'][field_name] = field_info
  551. export_data['conversations'][conversation_id] = processed_conversation
  552. # 添加缓存统计信息
  553. field_frequency = {}
  554. data_types_found = set()
  555. total_dataframes = 0
  556. total_questions = 0
  557. for conv_data in export_data['conversations'].values():
  558. for field_name, field_info in conv_data['fields'].items():
  559. field_frequency[field_name] = field_frequency.get(field_name, 0) + 1
  560. data_types_found.add(field_info['data_type'])
  561. if field_name == 'df' and not field_info['is_none']:
  562. total_dataframes += 1
  563. if field_name == 'question' and not field_info['is_none']:
  564. total_questions += 1
  565. export_data['cache_statistics'] = {
  566. 'field_frequency': field_frequency,
  567. 'data_types_found': list(data_types_found),
  568. 'total_dataframes': total_dataframes,
  569. 'total_questions': total_questions,
  570. 'has_session_timing': 'session_start_time' in field_frequency,
  571. 'has_conversation_timing': 'conversation_start_time' in field_frequency
  572. }
  573. return jsonify(result.success(data=export_data))
  574. except Exception as e:
  575. import traceback
  576. error_details = {
  577. 'error_message': str(e),
  578. 'error_type': type(e).__name__,
  579. 'traceback': traceback.format_exc()
  580. }
  581. return jsonify(result.failed(
  582. message=f"导出缓存失败: {str(e)}",
  583. code=500,
  584. data=error_details
  585. )), 500
  586. # ==================== 清理功能API ====================
  587. @app.flask_app.route('/api/v0/cache_preview_cleanup', methods=['POST'])
  588. def cache_preview_cleanup():
  589. """清理功能:预览删除操作 - 保持原功能"""
  590. try:
  591. req = request.get_json(force=True)
  592. # 时间条件 - 支持三种方式
  593. older_than_hours = req.get('older_than_hours')
  594. older_than_days = req.get('older_than_days')
  595. before_timestamp = req.get('before_timestamp') # YYYY-MM-DD HH:MM:SS 格式
  596. cache = app.cache
  597. # 计算截止时间
  598. cutoff_time = None
  599. time_condition = None
  600. if older_than_hours:
  601. cutoff_time = datetime.now() - timedelta(hours=older_than_hours)
  602. time_condition = f"older_than_hours: {older_than_hours}"
  603. elif older_than_days:
  604. cutoff_time = datetime.now() - timedelta(days=older_than_days)
  605. time_condition = f"older_than_days: {older_than_days}"
  606. elif before_timestamp:
  607. try:
  608. # 支持 YYYY-MM-DD HH:MM:SS 格式
  609. cutoff_time = datetime.strptime(before_timestamp, '%Y-%m-%d %H:%M:%S')
  610. time_condition = f"before_timestamp: {before_timestamp}"
  611. except ValueError:
  612. return jsonify(result.failed(
  613. message="before_timestamp格式错误,请使用 YYYY-MM-DD HH:MM:SS 格式",
  614. code=400
  615. )), 400
  616. else:
  617. return jsonify(result.failed(
  618. message="必须提供时间条件:older_than_hours, older_than_days 或 before_timestamp (YYYY-MM-DD HH:MM:SS)",
  619. code=400
  620. )), 400
  621. preview = {
  622. 'time_condition': time_condition,
  623. 'cutoff_time': cutoff_time.isoformat(),
  624. 'will_be_removed': {
  625. 'sessions': []
  626. },
  627. 'will_be_kept': {
  628. 'sessions_count': 0,
  629. 'conversations_count': 0
  630. },
  631. 'summary': {
  632. 'sessions_to_remove': 0,
  633. 'conversations_to_remove': 0,
  634. 'sessions_to_keep': 0,
  635. 'conversations_to_keep': 0
  636. }
  637. }
  638. # 预览按session删除
  639. sessions_to_remove_count = 0
  640. conversations_to_remove_count = 0
  641. for session_id, session_data in cache.session_info.items():
  642. session_preview = {
  643. 'session_id': session_id,
  644. 'start_time': session_data['start_time'].isoformat(),
  645. 'conversation_count': len(session_data['conversations']),
  646. 'conversations': []
  647. }
  648. # 添加conversation详情
  649. for conv_id in session_data['conversations']:
  650. if conv_id in cache.cache:
  651. conv_data = cache.cache[conv_id]
  652. session_preview['conversations'].append({
  653. 'conversation_id': conv_id,
  654. 'question': conv_data.get('question', '')[:50] + '...' if conv_data.get('question') else '',
  655. 'start_time': cache.conversation_start_times.get(conv_id, '').isoformat() if cache.conversation_start_times.get(conv_id) else ''
  656. })
  657. if session_data['start_time'] < cutoff_time:
  658. preview['will_be_removed']['sessions'].append(session_preview)
  659. sessions_to_remove_count += 1
  660. conversations_to_remove_count += len(session_data['conversations'])
  661. else:
  662. preview['will_be_kept']['sessions_count'] += 1
  663. preview['will_be_kept']['conversations_count'] += len(session_data['conversations'])
  664. # 更新摘要统计
  665. preview['summary'] = {
  666. 'sessions_to_remove': sessions_to_remove_count,
  667. 'conversations_to_remove': conversations_to_remove_count,
  668. 'sessions_to_keep': preview['will_be_kept']['sessions_count'],
  669. 'conversations_to_keep': preview['will_be_kept']['conversations_count']
  670. }
  671. return jsonify(result.success(data=preview))
  672. except Exception as e:
  673. return jsonify(result.failed(
  674. message=f"预览清理操作失败: {str(e)}",
  675. code=500
  676. )), 500
  677. @app.flask_app.route('/api/v0/cache_cleanup', methods=['POST'])
  678. def cache_cleanup():
  679. """清理功能:实际删除缓存 - 保持原功能"""
  680. try:
  681. req = request.get_json(force=True)
  682. # 时间条件 - 支持三种方式
  683. older_than_hours = req.get('older_than_hours')
  684. older_than_days = req.get('older_than_days')
  685. before_timestamp = req.get('before_timestamp') # YYYY-MM-DD HH:MM:SS 格式
  686. cache = app.cache
  687. if not hasattr(cache, 'session_info'):
  688. return jsonify(result.failed(
  689. message="缓存不支持会话功能",
  690. code=400
  691. )), 400
  692. # 计算截止时间
  693. cutoff_time = None
  694. time_condition = None
  695. if older_than_hours:
  696. cutoff_time = datetime.now() - timedelta(hours=older_than_hours)
  697. time_condition = f"older_than_hours: {older_than_hours}"
  698. elif older_than_days:
  699. cutoff_time = datetime.now() - timedelta(days=older_than_days)
  700. time_condition = f"older_than_days: {older_than_days}"
  701. elif before_timestamp:
  702. try:
  703. # 支持 YYYY-MM-DD HH:MM:SS 格式
  704. cutoff_time = datetime.strptime(before_timestamp, '%Y-%m-%d %H:%M:%S')
  705. time_condition = f"before_timestamp: {before_timestamp}"
  706. except ValueError:
  707. return jsonify(result.failed(
  708. message="before_timestamp格式错误,请使用 YYYY-MM-DD HH:MM:SS 格式",
  709. code=400
  710. )), 400
  711. else:
  712. return jsonify(result.failed(
  713. message="必须提供时间条件:older_than_hours, older_than_days 或 before_timestamp (YYYY-MM-DD HH:MM:SS)",
  714. code=400
  715. )), 400
  716. cleanup_stats = {
  717. 'time_condition': time_condition,
  718. 'cutoff_time': cutoff_time.isoformat(),
  719. 'sessions_removed': 0,
  720. 'conversations_removed': 0,
  721. 'sessions_kept': 0,
  722. 'conversations_kept': 0,
  723. 'removed_session_ids': [],
  724. 'removed_conversation_ids': []
  725. }
  726. # 按session删除
  727. sessions_to_remove = []
  728. for session_id, session_data in cache.session_info.items():
  729. if session_data['start_time'] < cutoff_time:
  730. sessions_to_remove.append(session_id)
  731. # 删除符合条件的sessions及其所有conversations
  732. for session_id in sessions_to_remove:
  733. session_data = cache.session_info[session_id]
  734. conversations_in_session = session_data['conversations'].copy()
  735. # 删除session中的所有conversations
  736. for conv_id in conversations_in_session:
  737. if conv_id in cache.cache:
  738. del cache.cache[conv_id]
  739. cleanup_stats['conversations_removed'] += 1
  740. cleanup_stats['removed_conversation_ids'].append(conv_id)
  741. # 清理conversation相关的时间记录
  742. if hasattr(cache, 'conversation_start_times') and conv_id in cache.conversation_start_times:
  743. del cache.conversation_start_times[conv_id]
  744. if hasattr(cache, 'conversation_to_session') and conv_id in cache.conversation_to_session:
  745. del cache.conversation_to_session[conv_id]
  746. # 删除session记录
  747. del cache.session_info[session_id]
  748. cleanup_stats['sessions_removed'] += 1
  749. cleanup_stats['removed_session_ids'].append(session_id)
  750. # 统计保留的sessions和conversations
  751. cleanup_stats['sessions_kept'] = len(cache.session_info)
  752. cleanup_stats['conversations_kept'] = len(cache.cache)
  753. return jsonify(result.success(data=cleanup_stats))
  754. except Exception as e:
  755. return jsonify(result.failed(
  756. message=f"清理缓存失败: {str(e)}",
  757. code=500
  758. )), 500
  759. # 前端JavaScript示例 - 如何维持会话
  760. """
  761. // 前端需要维护一个会话ID
  762. class ChatSession {
  763. constructor() {
  764. // 从localStorage获取或创建新的会话ID
  765. this.sessionId = localStorage.getItem('chat_session_id') || this.generateSessionId();
  766. localStorage.setItem('chat_session_id', this.sessionId);
  767. }
  768. generateSessionId() {
  769. return 'session_' + Date.now() + '_' + Math.random().toString(36).substr(2, 9);
  770. }
  771. async askQuestion(question) {
  772. const response = await fetch('/api/v0/ask', {
  773. method: 'POST',
  774. headers: {
  775. 'Content-Type': 'application/json',
  776. },
  777. body: JSON.stringify({
  778. question: question,
  779. session_id: this.sessionId // 关键:传递会话ID
  780. })
  781. });
  782. return await response.json();
  783. }
  784. // 开始新会话
  785. startNewSession() {
  786. this.sessionId = this.generateSessionId();
  787. localStorage.setItem('chat_session_id', this.sessionId);
  788. }
  789. }
  790. // 使用示例
  791. const chatSession = new ChatSession();
  792. chatSession.askQuestion("各年龄段客户的流失率如何?");
  793. """
  794. print("正在启动Flask应用: http://localhost:8084")
  795. app.run(host="0.0.0.0", port=8084, debug=True)