Переглянути джерело

统一的DAG可以正常运行了

wangxq 1 місяць тому
батько
коміт
6583bd530d
1 змінених файлів з 1175 додано та 0 видалено
  1. 1175 0
      dags/dag_dataops_unified_scheduler.py

+ 1175 - 0
dags/dag_dataops_unified_scheduler.py

@@ -0,0 +1,1175 @@
+# dag_dataops_unified_scheduler.py
+# 合并了prepare, data和summary三个DAG的功能
+from airflow import DAG
+from airflow.operators.python import PythonOperator
+from airflow.operators.empty import EmptyOperator
+from airflow.utils.task_group import TaskGroup
+from datetime import datetime, timedelta, date
+import logging
+import networkx as nx
+import json
+from decimal import Decimal
+from common import (
+    get_pg_conn, 
+    get_neo4j_driver,
+    execute_with_monitoring,
+    get_today_date
+)
+from config import TASK_RETRY_CONFIG, PG_CONFIG, NEO4J_CONFIG
+
+# 创建日志记录器
+logger = logging.getLogger(__name__)
+
+# 添加日期序列化器
+def json_serial(obj):
+    """将日期对象序列化为ISO格式字符串的JSON序列化器"""
+    if isinstance(obj, (datetime, date)):
+        return obj.isoformat()
+    raise TypeError(f"类型 {type(obj)} 不能被序列化为JSON")
+
+# 添加自定义JSON编码器解决Decimal序列化问题
+class DecimalEncoder(json.JSONEncoder):
+    def default(self, obj):
+        if isinstance(obj, Decimal):
+            return float(obj)
+        # 处理日期类型
+        elif isinstance(obj, (datetime, date)):
+            return obj.isoformat()
+        # 让父类处理其他类型
+        return super(DecimalEncoder, self).default(obj)
+
+#############################################
+# 第一阶段: 准备阶段(Prepare Phase)的函数
+#############################################
+
+def get_enabled_tables():
+    """获取所有启用的表"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    try:
+        cursor.execute("""
+            SELECT owner_id, table_name 
+            FROM schedule_status 
+            WHERE schedule_is_enabled = TRUE
+        """)
+        result = cursor.fetchall()
+        return [row[1] for row in result]  # 只返回表名
+    except Exception as e:
+        logger.error(f"获取启用表失败: {str(e)}")
+        return []
+    finally:
+        cursor.close()
+        conn.close()
+
+def check_table_directly_subscribed(table_name):
+    """检查表是否在schedule_status表中直接订阅"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    try:
+        cursor.execute("""
+            SELECT schedule_is_enabled
+            FROM schedule_status 
+            WHERE table_name = %s
+        """, (table_name,))
+        result = cursor.fetchone()
+        return result and result[0] is True
+    except Exception as e:
+        logger.error(f"检查表订阅状态失败: {str(e)}")
+        return False
+    finally:
+        cursor.close()
+        conn.close()
+
+def get_table_info_from_neo4j(table_name):
+    """从Neo4j获取表的详细信息"""
+    driver = get_neo4j_driver()
+     # 检查表是否直接订阅
+    is_directly_schedule = check_table_directly_subscribed(table_name)
+
+    table_info = {
+        'target_table': table_name,
+        'is_directly_schedule': is_directly_schedule,  # 初始值设为True,从schedule_status表获取
+    }
+    
+    try:
+        with driver.session() as session:
+            # 查询表标签和状态
+            query_table = """
+                MATCH (t {en_name: $table_name})
+                RETURN labels(t) AS labels, t.status AS status, t.frequency AS frequency
+            """
+            result = session.run(query_table, table_name=table_name)
+            record = result.single()
+            
+            if record:
+                labels = record.get("labels", [])
+                table_info['target_table_label'] = [label for label in labels if label in ["DataResource", "DataModel", "DataSource"]][0] if labels else None
+                table_info['target_table_status'] = record.get("status", True)  # 默认为True
+                table_info['default_update_frequency'] = record.get("frequency")
+                
+                # 根据标签类型查询关系和脚本信息
+                if "DataResource" in labels:
+                    query_rel = """
+                        MATCH (target {en_name: $table_name})-[rel:ORIGINATES_FROM]->(source)
+                        RETURN source.en_name AS source_table, rel.script_name AS script_name,
+                               rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
+                    """
+                elif "DataModel" in labels:
+                    query_rel = """
+                        MATCH (target {en_name: $table_name})-[rel:DERIVED_FROM]->(source)
+                        RETURN source.en_name AS source_table, rel.script_name AS script_name,
+                               rel.script_type AS script_type, rel.script_exec_mode AS script_exec_mode
+                    """
+                else:
+                    logger.warning(f"表 {table_name} 不是DataResource或DataModel类型")
+                    return table_info
+                
+                result = session.run(query_rel, table_name=table_name)
+                record = result.single()
+                
+                if record:
+                    table_info['source_table'] = record.get("source_table")     
+
+                    # 检查script_name是否为空
+                    script_name = record.get("script_name")
+                    if not script_name:
+                        logger.warning(f"表 {table_name} 的关系中没有script_name属性,可能导致后续处理出错")
+                    table_info['script_name'] = script_name
+                    
+                    # 设置默认值,确保即使属性为空也有默认值
+                    table_info['script_type'] = record.get("script_type", "python")  # 默认为python
+                    table_info['script_exec_mode'] = record.get("script_exec_mode", "append")  # 默认为append
+                else:
+                    logger.warning(f"未找到表 {table_name} 的关系信息")
+            else:
+                logger.warning(f"在Neo4j中找不到表 {table_name} 的信息")
+    except Exception as e:
+        logger.error(f"获取表 {table_name} 的信息时出错: {str(e)}")
+    finally:
+        driver.close()
+    
+    return table_info
+
+def process_dependencies(tables_info):
+    """处理表间依赖关系,添加被动调度的表"""
+    # 存储所有表信息的字典
+    all_tables = {t['target_table']: t for t in tables_info}
+    driver = get_neo4j_driver()
+    
+    try:
+        with driver.session() as session:
+            for table_name, table_info in list(all_tables.items()):
+                if table_info.get('target_table_label') == 'DataModel':
+                    # 查询其依赖表
+                    query = """
+                        MATCH (dm {en_name: $table_name})-[:DERIVED_FROM]->(dep)
+                        RETURN dep.en_name AS dep_name, labels(dep) AS dep_labels, 
+                               dep.status AS dep_status, dep.frequency AS dep_frequency
+                    """
+                    result = session.run(query, table_name=table_name)
+                    
+                    for record in result:
+                        dep_name = record.get("dep_name")
+                        dep_labels = record.get("dep_labels", [])
+                        dep_status = record.get("dep_status", True)
+                        dep_frequency = record.get("dep_frequency")
+                        
+                        # 处理未被直接调度的依赖表
+                        if dep_name and dep_name not in all_tables:
+                            logger.info(f"发现被动依赖表: {dep_name}, 标签: {dep_labels}")
+                            
+                            # 获取依赖表详细信息
+                            dep_info = get_table_info_from_neo4j(dep_name)
+                            dep_info['is_directly_schedule'] = False
+                            
+                            # 处理调度频率继承
+                            if not dep_info.get('default_update_frequency'):
+                                dep_info['default_update_frequency'] = table_info.get('default_update_frequency')
+                            
+                            all_tables[dep_name] = dep_info
+    except Exception as e:
+        logger.error(f"处理依赖关系时出错: {str(e)}")
+    finally:
+        driver.close()
+    
+    return list(all_tables.values())
+
+def filter_invalid_tables(tables_info):
+    """过滤无效表及其依赖,使用NetworkX构建依赖图"""
+    # 构建表名到索引的映射
+    table_dict = {t['target_table']: i for i, t in enumerate(tables_info)}
+    
+    # 找出无效表
+    invalid_tables = set()
+    for table in tables_info:
+        if table.get('target_table_status') is False:
+            invalid_tables.add(table['target_table'])
+            logger.info(f"表 {table['target_table']} 的状态为无效")
+    
+    # 构建依赖图
+    G = nx.DiGraph()
+    
+    # 添加所有节点
+    for table in tables_info:
+        G.add_node(table['target_table'])
+    
+    # 查询并添加依赖边
+    driver = get_neo4j_driver()
+    try:
+        with driver.session() as session:
+            for table in tables_info:
+                if table.get('target_table_label') == 'DataModel':
+                    query = """
+                        MATCH (source {en_name: $table_name})-[:DERIVED_FROM]->(target)
+                        RETURN target.en_name AS target_name
+                    """
+                    result = session.run(query, table_name=table['target_table'])
+                    
+                    for record in result:
+                        target_name = record.get("target_name")
+                        if target_name and target_name in table_dict:
+                            # 添加从目标到源的边,表示目标依赖于源
+                            G.add_edge(table['target_table'], target_name)
+                            logger.debug(f"添加依赖边: {table['target_table']} -> {target_name}")
+    except Exception as e:
+        logger.error(f"构建依赖图时出错: {str(e)}")
+    finally:
+        driver.close()
+    
+    # 找出依赖于无效表的所有表
+    downstream_invalid = set()
+    for invalid_table in invalid_tables:
+        # 获取可从无效表到达的所有节点
+        try:
+            descendants = nx.descendants(G, invalid_table)
+            downstream_invalid.update(descendants)
+            logger.info(f"表 {invalid_table} 的下游无效表: {descendants}")
+        except Exception as e:
+            logger.error(f"处理表 {invalid_table} 的下游依赖时出错: {str(e)}")
+    
+    # 合并所有无效表
+    all_invalid = invalid_tables.union(downstream_invalid)
+    logger.info(f"总共 {len(all_invalid)} 个表被标记为无效: {all_invalid}")
+    
+    # 过滤出有效表
+    valid_tables = [t for t in tables_info if t['target_table'] not in all_invalid]
+    logger.info(f"过滤后保留 {len(valid_tables)} 个有效表")
+    
+    return valid_tables
+
+def write_to_airflow_dag_schedule(exec_date, tables_info):
+    """将表信息写入airflow_dag_schedule表"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    
+    try:
+        # 清理当日数据,避免重复
+        cursor.execute("""
+            DELETE FROM airflow_dag_schedule WHERE exec_date = %s
+        """, (exec_date,))
+        logger.info(f"已清理执行日期 {exec_date} 的现有数据")
+        
+        # 批量插入新数据
+        inserted_count = 0
+        for table in tables_info:
+            cursor.execute("""
+                INSERT INTO airflow_dag_schedule (
+                    exec_date, source_table, target_table, target_table_label,
+                    target_table_status, is_directly_schedule, default_update_frequency,
+                    script_name, script_type, script_exec_mode
+                ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
+            """, (
+                exec_date,
+                table.get('source_table'),
+                table['target_table'],
+                table.get('target_table_label'),
+                table.get('target_table_status', True),
+                table.get('is_directly_schedule', False),
+                table.get('default_update_frequency'),
+                table.get('script_name'),
+                table.get('script_type', 'python'),
+                table.get('script_exec_mode', 'append')
+            ))
+            inserted_count += 1
+        
+        conn.commit()
+        logger.info(f"成功插入 {inserted_count} 条记录到 airflow_dag_schedule 表")
+        return inserted_count
+    except Exception as e:
+        logger.error(f"写入 airflow_dag_schedule 表时出错: {str(e)}")
+        conn.rollback()
+        # 重新抛出异常,确保错误被正确传播
+        raise
+    finally:
+        cursor.close()
+        conn.close()
+
+def prepare_dag_schedule(**kwargs):
+    """准备DAG调度任务的主函数"""
+    exec_date = kwargs.get('ds') or get_today_date()
+    logger.info(f"开始准备执行日期 {exec_date} 的统一调度任务")
+    
+    # 1. 获取启用的表
+    enabled_tables = get_enabled_tables()
+    logger.info(f"从schedule_status表获取到 {len(enabled_tables)} 个启用的表")
+    
+    if not enabled_tables:
+        logger.warning("没有找到启用的表,准备工作结束")
+        return 0
+    
+    # 2. 获取表的详细信息
+    tables_info = []
+    for table_name in enabled_tables:
+        table_info = get_table_info_from_neo4j(table_name)
+        if table_info:
+            tables_info.append(table_info)
+    
+    logger.info(f"成功获取 {len(tables_info)} 个表的详细信息")
+    
+    # 3. 处理依赖关系,添加被动调度的表
+    enriched_tables = process_dependencies(tables_info)
+    logger.info(f"处理依赖后,总共有 {len(enriched_tables)} 个表")
+    
+    # 4. 过滤无效表及其依赖
+    valid_tables = filter_invalid_tables(enriched_tables)
+    logger.info(f"过滤无效表后,最终有 {len(valid_tables)} 个有效表")
+    
+    # 5. 写入airflow_dag_schedule表
+    inserted_count = write_to_airflow_dag_schedule(exec_date, valid_tables)
+    
+    # 6. 检查插入操作是否成功,如果失败则抛出异常
+    if inserted_count == 0 and valid_tables:
+        error_msg = f"插入操作失败,无记录被插入到airflow_dag_schedule表,但有{len(valid_tables)}个有效表需要处理"
+        logger.error(error_msg)
+        raise Exception(error_msg)
+    
+    # 7. 生成执行计划数据
+    resource_tasks = []
+    model_tasks = []
+    
+    for table in valid_tables:
+        if table.get('target_table_label') == 'DataResource':
+            resource_tasks.append({
+                "source_table": table.get('source_table'),
+                "target_table": table['target_table'],
+                "target_table_label": "DataResource",
+                "script_name": table.get('script_name'),
+                "script_exec_mode": table.get('script_exec_mode', 'append')
+            })
+        elif table.get('target_table_label') == 'DataModel':
+            model_tasks.append({
+                "source_table": table.get('source_table'),
+                "target_table": table['target_table'],
+                "target_table_label": "DataModel",
+                "script_name": table.get('script_name'),
+                "script_exec_mode": table.get('script_exec_mode', 'append')
+            })
+    
+    # 获取依赖关系
+    model_table_names = [t['target_table'] for t in model_tasks]
+    dependencies = {}
+    
+    driver = get_neo4j_driver()
+    try:
+        with driver.session() as session:
+            for table_name in model_table_names:
+                query = """
+                    MATCH (source:DataModel {en_name: $table_name})-[:DERIVED_FROM]->(target)
+                    RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
+                """
+                result = session.run(query, table_name=table_name)
+                
+                deps = []
+                for record in result:
+                    target = record.get("target")
+                    target_labels = record.get("target_labels", [])
+                    
+                    if target:
+                        table_type = next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
+                        deps.append({
+                            "table_name": target,
+                            "table_type": table_type
+                        })
+                
+                dependencies[table_name] = deps
+    finally:
+        driver.close()
+    
+    # 创建执行计划
+    execution_plan = {
+        "exec_date": exec_date,
+        "resource_tasks": resource_tasks,
+        "model_tasks": model_tasks,
+        "dependencies": dependencies
+    }
+    
+    # 将执行计划保存到XCom
+    kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(execution_plan, default=json_serial))
+    logger.info(f"准备了执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
+    
+    return inserted_count 
+
+#############################################
+# 第二阶段: 数据处理阶段(Data Processing Phase)的函数
+#############################################
+
+def get_latest_date():
+    """获取数据库中包含记录的最近日期"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    try:
+        cursor.execute("""
+            SELECT DISTINCT exec_date
+            FROM airflow_dag_schedule 
+            ORDER BY exec_date DESC
+            LIMIT 1
+        """)
+        result = cursor.fetchone()
+        if result:
+            latest_date = result[0]
+            logger.info(f"找到最近的包含记录的日期: {latest_date}")
+            return latest_date
+        else:
+            logger.warning("未找到包含记录的日期,将使用当前日期")
+            return get_today_date()
+    except Exception as e:
+        logger.error(f"查找最近日期时出错: {str(e)}")
+        return get_today_date()
+    finally:
+        cursor.close()
+        conn.close()
+
+def get_all_tasks(exec_date):
+    """获取所有需要执行的任务(DataResource和DataModel)"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    try:
+        # 查询所有资源表任务
+        cursor.execute("""
+            SELECT source_table, target_table, target_table_label, script_name, script_exec_mode
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND target_table_label = 'DataResource' AND script_name IS NOT NULL
+        """, (exec_date,))
+        resource_results = cursor.fetchall()
+        
+        # 查询所有模型表任务
+        cursor.execute("""
+            SELECT source_table, target_table, target_table_label, script_name, script_exec_mode
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND target_table_label = 'DataModel' AND script_name IS NOT NULL
+        """, (exec_date,))
+        model_results = cursor.fetchall()
+        
+        # 整理资源表信息
+        resource_tasks = []
+        for row in resource_results:
+            source_table, target_table, target_table_label, script_name, script_exec_mode = row
+            if script_name:  # 确保脚本名称不为空
+                resource_tasks.append({
+                    "source_table": source_table,
+                    "target_table": target_table,
+                    "target_table_label": target_table_label,
+                    "script_name": script_name,
+                    "script_exec_mode": script_exec_mode or "append"
+                })
+        
+        # 整理模型表信息
+        model_tasks = []
+        for row in model_results:
+            source_table, target_table, target_table_label, script_name, script_exec_mode = row
+            if script_name:  # 确保脚本名称不为空
+                model_tasks.append({
+                    "source_table": source_table,
+                    "target_table": target_table,
+                    "target_table_label": target_table_label,
+                    "script_name": script_name,
+                    "script_exec_mode": script_exec_mode or "append"
+                })
+        
+        logger.info(f"获取到 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
+        return resource_tasks, model_tasks
+    except Exception as e:
+        logger.error(f"获取任务信息时出错: {str(e)}")
+        return [], []
+    finally:
+        cursor.close()
+        conn.close()
+
+def get_table_dependencies_for_data_phase(table_names):
+    """获取表之间的依赖关系"""
+    driver = get_neo4j_driver()
+    dependency_dict = {name: [] for name in table_names}
+    
+    try:
+        with driver.session() as session:
+            # 获取所有模型表之间的依赖关系
+            query = """
+                MATCH (source:DataModel)-[:DERIVED_FROM]->(target)
+                WHERE source.en_name IN $table_names
+                RETURN source.en_name AS source, target.en_name AS target, labels(target) AS target_labels
+            """
+            result = session.run(query, table_names=table_names)
+            
+            for record in result:
+                source = record.get("source")
+                target = record.get("target")
+                target_labels = record.get("target_labels", [])
+                
+                if source and target:
+                    # 将目标表添加到源表的依赖列表中
+                    dependency_dict[source].append({
+                        "table_name": target,
+                        "table_type": next((label for label in target_labels if label in ["DataModel", "DataResource"]), None)
+                    })
+                    logger.debug(f"依赖关系: {source} 依赖于 {target}")
+    except Exception as e:
+        logger.error(f"从Neo4j获取依赖关系时出错: {str(e)}")
+    finally:
+        driver.close()
+    
+    return dependency_dict
+
+def create_execution_plan(**kwargs):
+    """准备执行计划的函数,使用从准备阶段传递的数据"""
+    try:
+        # 从XCom获取执行计划
+        execution_plan = kwargs['ti'].xcom_pull(task_ids='prepare_phase.prepare_dag_schedule', key='execution_plan')
+        
+        # 如果找不到执行计划,则从数据库获取
+        if not execution_plan:
+            # 获取执行日期
+            exec_date = get_latest_date()
+            logger.info(f"未找到执行计划,从数据库获取。使用执行日期: {exec_date}")
+            
+            # 获取所有任务
+            resource_tasks, model_tasks = get_all_tasks(exec_date)
+            
+            if not resource_tasks and not model_tasks:
+                logger.warning(f"执行日期 {exec_date} 没有找到任务")
+                return 0
+            
+            # 为所有模型表获取依赖关系
+            model_table_names = [task["target_table"] for task in model_tasks]
+            dependencies = get_table_dependencies_for_data_phase(model_table_names)
+            
+            # 创建执行计划
+            new_execution_plan = {
+                "exec_date": exec_date,
+                "resource_tasks": resource_tasks,
+                "model_tasks": model_tasks,
+                "dependencies": dependencies
+            }
+            
+            # 保存执行计划
+            kwargs['ti'].xcom_push(key='execution_plan', value=json.dumps(new_execution_plan, default=json_serial))
+            logger.info(f"创建新的执行计划,包含 {len(resource_tasks)} 个资源表任务和 {len(model_tasks)} 个模型表任务")
+            
+            return json.dumps(new_execution_plan, default=json_serial)
+        
+        logger.info(f"成功获取执行计划")
+        return execution_plan
+    except Exception as e:
+        logger.error(f"创建执行计划时出错: {str(e)}")
+        # 返回空执行计划
+        empty_plan = {
+            "exec_date": get_today_date(),
+            "resource_tasks": [],
+            "model_tasks": [],
+            "dependencies": {}
+        }
+        return json.dumps(empty_plan, default=json_serial)
+
+def process_resource(target_table, script_name, script_exec_mode, exec_date):
+    """处理单个资源表"""
+    logger.info(f"执行资源表 {target_table} 的脚本 {script_name}")
+    # 检查exec_date是否是JSON字符串
+    if isinstance(exec_date, str) and exec_date.startswith('{'):
+        try:
+            # 尝试解析JSON字符串
+            exec_date_data = json.loads(exec_date)
+            exec_date = exec_date_data.get("exec_date")
+            logger.info(f"从JSON中提取执行日期: {exec_date}")
+        except Exception as e:
+            logger.error(f"解析exec_date JSON时出错: {str(e)}")
+    
+    return execute_with_monitoring(
+        target_table=target_table,
+        script_name=script_name,
+        script_exec_mode=script_exec_mode,
+        exec_date=exec_date
+    )
+
+def process_model(target_table, script_name, script_exec_mode, exec_date):
+    """处理单个模型表"""
+    logger.info(f"执行模型表 {target_table} 的脚本 {script_name}")
+    # 检查exec_date是否是JSON字符串
+    if isinstance(exec_date, str) and exec_date.startswith('{'):
+        try:
+            # 尝试解析JSON字符串
+            exec_date_data = json.loads(exec_date)
+            exec_date = exec_date_data.get("exec_date")
+            logger.info(f"从JSON中提取执行日期: {exec_date}")
+        except Exception as e:
+            logger.error(f"解析exec_date JSON时出错: {str(e)}")
+    
+    return execute_with_monitoring(
+        target_table=target_table,
+        script_name=script_name,
+        script_exec_mode=script_exec_mode,
+        exec_date=exec_date
+    ) 
+
+#############################################
+# 第三阶段: 汇总阶段(Summary Phase)的函数
+#############################################
+
+def get_execution_stats(exec_date):
+    """获取当日执行统计信息"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    try:
+        # 查询总任务数
+        cursor.execute("""
+            SELECT COUNT(*) FROM airflow_dag_schedule WHERE exec_date = %s
+        """, (exec_date,))
+        result = cursor.fetchone()
+        total_tasks = result[0] if result else 0
+        
+        # 查询每种类型的任务数
+        cursor.execute("""
+            SELECT target_table_label, COUNT(*) 
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s 
+            GROUP BY target_table_label
+        """, (exec_date,))
+        type_counts = {row[0]: row[1] for row in cursor.fetchall()}
+        
+        # 查询执行结果统计
+        cursor.execute("""
+            SELECT COUNT(*) 
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND exec_result IS TRUE
+        """, (exec_date,))
+        result = cursor.fetchone()
+        success_count = result[0] if result else 0
+        
+        cursor.execute("""
+            SELECT COUNT(*) 
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND exec_result IS FALSE
+        """, (exec_date,))
+        result = cursor.fetchone()
+        fail_count = result[0] if result else 0
+        
+        cursor.execute("""
+            SELECT COUNT(*) 
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND exec_result IS NULL
+        """, (exec_date,))
+        result = cursor.fetchone()
+        pending_count = result[0] if result else 0
+        
+        # 计算执行时间统计
+        cursor.execute("""
+            SELECT AVG(exec_duration), MIN(exec_duration), MAX(exec_duration)
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND exec_duration IS NOT NULL
+        """, (exec_date,))
+        time_stats = cursor.fetchone()
+        
+        # 确保时间统计不为None
+        if time_stats and time_stats[0] is not None:
+            avg_duration = float(time_stats[0])
+            min_duration = float(time_stats[1]) if time_stats[1] is not None else None
+            max_duration = float(time_stats[2]) if time_stats[2] is not None else None
+        else:
+            avg_duration = None
+            min_duration = None
+            max_duration = None
+        
+        # 查询失败任务详情
+        cursor.execute("""
+            SELECT target_table, script_name, target_table_label, exec_duration
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND exec_result IS FALSE
+        """, (exec_date,))
+        failed_tasks = []
+        for row in cursor.fetchall():
+            task_dict = {
+                "target_table": row[0],
+                "script_name": row[1],
+                "target_table_label": row[2],
+            }
+            if row[3] is not None:
+                task_dict["exec_duration"] = float(row[3])
+            else:
+                task_dict["exec_duration"] = None
+            failed_tasks.append(task_dict)
+        
+        # 计算成功率,避免除零错误
+        success_rate = 0
+        if total_tasks > 0:
+            success_rate = (success_count / total_tasks) * 100
+        
+        # 汇总统计信息
+        stats = {
+            "exec_date": exec_date,
+            "total_tasks": total_tasks,
+            "type_counts": type_counts,
+            "success_count": success_count,
+            "fail_count": fail_count,
+            "pending_count": pending_count,
+            "success_rate": success_rate,
+            "avg_duration": avg_duration,
+            "min_duration": min_duration,
+            "max_duration": max_duration,
+            "failed_tasks": failed_tasks
+        }
+        
+        return stats
+    except Exception as e:
+        logger.error(f"获取执行统计信息时出错: {str(e)}")
+        return {}
+    finally:
+        cursor.close()
+        conn.close()
+
+def update_missing_results(exec_date):
+    """更新缺失的执行结果信息"""
+    conn = get_pg_conn()
+    cursor = conn.cursor()
+    try:
+        # 查询所有缺失执行结果的任务
+        cursor.execute("""
+            SELECT target_table, script_name
+            FROM airflow_dag_schedule 
+            WHERE exec_date = %s AND exec_result IS NULL
+        """, (exec_date,))
+        missing_results = cursor.fetchall()
+        
+        update_count = 0
+        for row in missing_results:
+            target_table, script_name = row
+            
+            # 如果有开始时间但没有结束时间,假设执行失败
+            cursor.execute("""
+                SELECT exec_start_time
+                FROM airflow_dag_schedule
+                WHERE exec_date = %s AND target_table = %s AND script_name = %s
+            """, (exec_date, target_table, script_name))
+            
+            start_time = cursor.fetchone()
+            
+            if start_time and start_time[0]:
+                # 有开始时间但无结果,标记为失败
+                now = datetime.now()
+                duration = (now - start_time[0]).total_seconds()
+                
+                cursor.execute("""
+                    UPDATE airflow_dag_schedule
+                    SET exec_result = FALSE, exec_end_time = %s, exec_duration = %s
+                    WHERE exec_date = %s AND target_table = %s AND script_name = %s
+                """, (now, duration, exec_date, target_table, script_name))
+                
+                logger.warning(f"任务 {target_table} 的脚本 {script_name} 标记为失败,开始时间: {start_time[0]}")
+                update_count += 1
+            else:
+                # 没有开始时间且无结果,假设未执行
+                logger.warning(f"任务 {target_table} 的脚本 {script_name} 未执行")
+        
+        conn.commit()
+        logger.info(f"更新了 {update_count} 个缺失结果的任务")
+        return update_count
+    except Exception as e:
+        logger.error(f"更新缺失执行结果时出错: {str(e)}")
+        conn.rollback()
+        return 0
+    finally:
+        cursor.close()
+        conn.close()
+
+def generate_unified_execution_report(exec_date, stats):
+    """生成统一执行报告"""
+    # 构建报告
+    report = []
+    report.append(f"========== 统一数据运维系统执行报告 ==========")
+    report.append(f"执行日期: {exec_date}")
+    report.append(f"总任务数: {stats['total_tasks']}")
+    
+    # 任务类型分布
+    report.append("\n--- 任务类型分布 ---")
+    for label, count in stats.get('type_counts', {}).items():
+        report.append(f"{label} 任务: {count} 个")
+    
+    # 执行结果统计
+    report.append("\n--- 执行结果统计 ---")
+    report.append(f"成功任务: {stats.get('success_count', 0)} 个")
+    report.append(f"失败任务: {stats.get('fail_count', 0)} 个")
+    report.append(f"未执行任务: {stats.get('pending_count', 0)} 个")
+    report.append(f"成功率: {stats.get('success_rate', 0):.2f}%")
+    
+    # 执行时间统计
+    report.append("\n--- 执行时间统计 (秒) ---")
+    avg_duration = stats.get('avg_duration')
+    min_duration = stats.get('min_duration')
+    max_duration = stats.get('max_duration')
+    
+    report.append(f"平均执行时间: {avg_duration:.2f}" if avg_duration is not None else "平均执行时间: N/A")
+    report.append(f"最短执行时间: {min_duration:.2f}" if min_duration is not None else "最短执行时间: N/A")
+    report.append(f"最长执行时间: {max_duration:.2f}" if max_duration is not None else "最长执行时间: N/A")
+    
+    # 失败任务详情
+    failed_tasks = stats.get('failed_tasks', [])
+    if failed_tasks:
+        report.append("\n--- 失败任务详情 ---")
+        for i, task in enumerate(failed_tasks, 1):
+            report.append(f"{i}. 表名: {task['target_table']}")
+            report.append(f"   脚本: {task['script_name']}")
+            report.append(f"   类型: {task['target_table_label']}")
+            exec_duration = task.get('exec_duration')
+            if exec_duration is not None:
+                report.append(f"   执行时间: {exec_duration:.2f} 秒")
+            else:
+                report.append("   执行时间: N/A")
+    
+    report.append("\n========== 报告结束 ==========")
+    
+    # 将报告转换为字符串
+    report_str = "\n".join(report)
+    
+    # 记录到日志
+    logger.info("\n" + report_str)
+    
+    return report_str
+
+def summarize_execution(**kwargs):
+    """汇总执行情况的主函数"""
+    try:
+        exec_date = kwargs.get('ds') or get_today_date()
+        logger.info(f"开始汇总执行日期 {exec_date} 的统一执行情况")
+        
+        # 1. 更新缺失的执行结果
+        try:
+            update_count = update_missing_results(exec_date)
+            logger.info(f"更新了 {update_count} 个缺失的执行结果")
+        except Exception as e:
+            logger.error(f"更新缺失执行结果时出错: {str(e)}")
+            update_count = 0
+        
+        # 2. 获取执行统计信息
+        try:
+            stats = get_execution_stats(exec_date)
+            if not stats:
+                logger.warning("未能获取执行统计信息,将使用默认值")
+                stats = {
+                    "exec_date": exec_date,
+                    "total_tasks": 0,
+                    "type_counts": {},
+                    "success_count": 0,
+                    "fail_count": 0,
+                    "pending_count": 0,
+                    "success_rate": 0,
+                    "avg_duration": None,
+                    "min_duration": None,
+                    "max_duration": None,
+                    "failed_tasks": []
+                }
+        except Exception as e:
+            logger.error(f"获取执行统计信息时出错: {str(e)}")
+            stats = {
+                "exec_date": exec_date,
+                "total_tasks": 0,
+                "type_counts": {},
+                "success_count": 0,
+                "fail_count": 0,
+                "pending_count": 0,
+                "success_rate": 0,
+                "avg_duration": None,
+                "min_duration": None,
+                "max_duration": None,
+                "failed_tasks": []
+            }
+        
+        # 3. 生成执行报告
+        try:
+            report = generate_unified_execution_report(exec_date, stats)
+        except Exception as e:
+            logger.error(f"生成执行报告时出错: {str(e)}")
+            report = f"生成执行报告时出错: {str(e)}\n基础统计: 总任务数: {stats.get('total_tasks', 0)}, 成功: {stats.get('success_count', 0)}, 失败: {stats.get('fail_count', 0)}"
+        
+        # 将报告和统计信息传递给下一个任务
+        try:
+            kwargs['ti'].xcom_push(key='execution_stats', value=json.dumps(stats, cls=DecimalEncoder))
+            kwargs['ti'].xcom_push(key='execution_report', value=report)
+        except Exception as e:
+            logger.error(f"保存报告到XCom时出错: {str(e)}")
+        
+        return report
+    except Exception as e:
+        logger.error(f"汇总执行情况时出现未处理的错误: {str(e)}")
+        # 返回一个简单的错误报告,确保任务不会失败
+        return f"执行汇总时出现错误: {str(e)}" 
+
+# 创建DAG
+with DAG(
+    "dag_dataops_unified_scheduler", 
+    start_date=datetime(2024, 1, 1), 
+    schedule_interval="@daily", 
+    catchup=False,
+    default_args={
+        'owner': 'airflow',
+        'depends_on_past': False,
+        'email_on_failure': False,
+        'email_on_retry': False,
+        'retries': 1,
+        'retry_delay': timedelta(minutes=5)
+    }
+) as dag:
+    
+    #############################################
+    # 阶段1: 准备阶段(Prepare Phase)
+    #############################################
+    with TaskGroup("prepare_phase") as prepare_group:
+        # 任务开始标记
+        start_preparation = EmptyOperator(
+            task_id="start_preparation"
+        )
+        
+        # 准备调度任务
+        prepare_task = PythonOperator(
+            task_id="prepare_dag_schedule",
+            python_callable=prepare_dag_schedule,
+            provide_context=True
+        )
+        
+        # 创建执行计划 - 从data_processing_phase移至这里
+        create_plan = PythonOperator(
+            task_id="create_execution_plan",
+            python_callable=create_execution_plan,
+            provide_context=True
+        )
+        
+        # 准备完成标记
+        preparation_completed = EmptyOperator(
+            task_id="preparation_completed"
+        )
+        
+        # 设置任务依赖 - 调整为包含create_plan
+        start_preparation >> prepare_task >> create_plan >> preparation_completed
+    
+    #############################################
+    # 阶段2: 数据处理阶段(Data Processing Phase)
+    #############################################
+    with TaskGroup("data_processing_phase") as data_group:
+        # 过程完成标记
+        processing_completed = EmptyOperator(
+            task_id="processing_completed"
+        )
+    
+    #############################################
+    # 阶段3: 汇总阶段(Summary Phase)
+    #############################################
+    with TaskGroup("summary_phase") as summary_group:
+        # 汇总执行情况
+        summarize_task = PythonOperator(
+            task_id="summarize_execution",
+            python_callable=summarize_execution,
+            provide_context=True
+        )
+        
+        # 总结完成标记
+        summary_completed = EmptyOperator(
+            task_id="summary_completed"
+        )
+        
+        # 设置任务依赖
+        summarize_task >> summary_completed
+    
+    # 设置三个阶段之间的依赖关系 - 使用简单的TaskGroup依赖
+    prepare_group >> data_group >> summary_group
+
+    # 实际数据处理任务的动态创建逻辑
+    # 这部分代码在DAG运行时执行,根据数据库数据和执行计划动态创建任务
+    
+    # 从执行计划JSON中获取信息
+    execution_plan_json = '''{"exec_date": "2025-04-12", "resource_tasks": [], "model_tasks": [], "dependencies": {}}'''
+    
+    try:
+        # 尝试从文件中读取最新的执行计划,仅用于构建DAG视图
+        import os
+        plan_path = os.path.join(os.path.dirname(__file__), 'last_execution_plan.json')
+        if os.path.exists(plan_path):
+            with open(plan_path, 'r') as f:
+                execution_plan_json = f.read()
+    except Exception as e:
+        logger.warning(f"读取执行计划默认值时出错: {str(e)}")
+    
+    # 解析执行计划获取任务信息
+    try:
+        execution_plan = json.loads(execution_plan_json)
+        exec_date = execution_plan.get("exec_date", get_today_date())
+        resource_tasks = execution_plan.get("resource_tasks", [])
+        model_tasks = execution_plan.get("model_tasks", [])
+        dependencies = execution_plan.get("dependencies", {})
+        
+        # 任务字典,用于设置依赖关系
+        task_dict = {}
+        
+        # 1. 创建资源表任务
+        for task_info in resource_tasks:
+            table_name = task_info["target_table"]
+            script_name = task_info["script_name"]
+            exec_mode = task_info.get("script_exec_mode", "append")
+            
+            # 创建安全的任务ID - 直接使用表名作为ID,更简洁易读
+            safe_table_name = table_name.replace(".", "_").replace("-", "_")
+            
+            # 确保所有任务都是data_processing_phase的一部分
+            with data_group:
+                resource_task = PythonOperator(
+                    task_id=f"resource_{safe_table_name}",  # 不需要加前缀,TaskGroup会自动添加
+                    python_callable=process_resource,
+                    op_kwargs={
+                        "target_table": table_name,
+                        "script_name": script_name,
+                        "script_exec_mode": exec_mode,
+                        "exec_date": """{{ ti.xcom_pull(task_ids='prepare_phase.create_execution_plan') }}"""
+                    },
+                    retries=TASK_RETRY_CONFIG["retries"],
+                    retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"])
+                )
+            
+            # 将任务添加到字典
+            task_dict[table_name] = resource_task
+            
+            # 设置任务依赖 - 使用正确的引用方式
+            preparation_completed >> resource_task
+        
+        # 创建有向图,用于检测模型表之间的依赖关系
+        G = nx.DiGraph()
+        
+        # 将所有模型表添加为节点
+        for task_info in model_tasks:
+            table_name = task_info["target_table"]
+            G.add_node(table_name)
+        
+        # 添加模型表之间的依赖边
+        for source, deps in dependencies.items():
+            for dep in deps:
+                if dep.get("table_type") == "DataModel" and dep.get("table_name") in G.nodes():
+                    G.add_edge(dep.get("table_name"), source)  # 依赖方向:依赖项 -> 目标
+        
+        # 检测循环依赖并处理
+        cycles = list(nx.simple_cycles(G))
+        if cycles:
+            logger.warning(f"检测到循环依赖: {cycles}")
+            for cycle in cycles:
+                G.remove_edge(cycle[-1], cycle[0])
+                logger.info(f"打破循环依赖: 移除 {cycle[-1]} -> {cycle[0]} 的依赖")
+        
+        # 生成拓扑排序,确定执行顺序
+        try:
+            execution_order = list(nx.topological_sort(G))
+            logger.info(f"计算出的执行顺序: {execution_order}")
+        except Exception as e:
+            logger.error(f"生成拓扑排序失败: {str(e)}, 使用原始顺序")
+            execution_order = [task_info["target_table"] for task_info in model_tasks]
+        
+        # 2. 按拓扑排序顺序创建模型表任务
+        for table_name in execution_order:
+            task_info = next((t for t in model_tasks if t["target_table"] == table_name), None)
+            if not task_info:
+                continue
+                
+            script_name = task_info["script_name"]
+            exec_mode = task_info.get("script_exec_mode", "append")
+            
+            # 创建安全的任务ID
+            safe_table_name = table_name.replace(".", "_").replace("-", "_")
+            
+            # 确保所有任务都是data_processing_phase的一部分
+            with data_group:
+                model_task = PythonOperator(
+                    task_id=f"model_{safe_table_name}", # 更简洁的ID
+                    python_callable=process_model,
+                    op_kwargs={
+                        "target_table": table_name,
+                        "script_name": script_name,
+                        "script_exec_mode": exec_mode,
+                        "exec_date": """{{ ti.xcom_pull(task_ids='prepare_phase.create_execution_plan') }}"""
+                    },
+                    retries=TASK_RETRY_CONFIG["retries"],
+                    retry_delay=timedelta(minutes=TASK_RETRY_CONFIG["retry_delay_minutes"])
+                )
+            
+            # 将任务添加到字典
+            task_dict[table_name] = model_task
+            
+            # 设置依赖关系
+            deps = dependencies.get(table_name, [])
+            has_dependency = False
+            
+            # 处理模型表之间的依赖
+            for dep in deps:
+                dep_table = dep.get("table_name")
+                dep_type = dep.get("table_type")
+                
+                if dep_table in task_dict:
+                    task_dict[dep_table] >> model_task
+                    has_dependency = True
+                    logger.info(f"设置依赖: {dep_table} >> {table_name}")
+            
+            # 如果没有依赖,则依赖于资源表任务
+            if not has_dependency:
+                # 依赖于prepare_phase的完成
+                preparation_completed >> model_task
+                
+                # 同时从所有资源表任务连接
+                for resource_table in resource_tasks:
+                    resource_name = resource_table["target_table"]
+                    if resource_name in task_dict:
+                        task_dict[resource_name] >> model_task
+                        logger.info(f"设置资源依赖: {resource_name} >> {table_name}")
+
+        # 如果没有模型表任务,将所有资源表任务视为终端任务
+        if not model_tasks and resource_tasks:
+            terminal_tasks = [task["target_table"] for task in resource_tasks]
+        else:
+            # 找出所有终端任务(没有下游依赖的任务)
+            terminal_tasks = []
+            
+            # 检查所有模型表任务
+            for table_name in execution_order:
+                # 检查是否有下游任务
+                has_downstream = False
+                for source, deps in dependencies.items():
+                    if source == table_name:  # 跳过自身
+                        continue
+                    for dep in deps:
+                        if dep.get("table_name") == table_name:
+                            has_downstream = True
+                            break
+                    if has_downstream:
+                        break
+                
+                # 如果没有下游任务,添加到终端任务列表
+                if not has_downstream and table_name in task_dict:
+                    terminal_tasks.append(table_name)
+
+        # 如果既没有模型表任务也没有资源表任务,已有默认依赖链
+        if not terminal_tasks:
+            logger.warning("未找到任何任务,使用默认依赖链")
+        else:
+            # 将所有终端任务连接到完成标记
+            for table_name in terminal_tasks:
+                if table_name in task_dict:
+                    task_dict[table_name] >> processing_completed
+                    logger.info(f"设置终端任务: {table_name} >> processing_completed")
+
+    except Exception as e:
+        logger.error(f"构建任务DAG时出错: {str(e)}")
+        import traceback
+        logger.error(traceback.format_exc())
+        
+        # 确保即使出错,也有清晰的执行路径
+        # 已经有默认依赖链,不需要额外添加